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The cohomology solution and the index 
theorem on ring surfaces of genus g

La solución cohomológica y el teorema del índice para superficies 
sobre anillos de género g
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A b s t r a c t .  In this paper, some basic properties of the cohomology solution on 
ring surfaces of genus g are presented, and the theorem of Dolbeault and the 
theorem of Serre for the operator B = -§ d̂z are obtained. The index theorem 
on such ring surfaces of genus g is also discussed.
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R esum en . En este artículo se presentan algunas propiedades básicas de la 
solución cohomológica para superficies sobre anillos de género g y se obtienen 
los teoremas de Dolbeault y Serre para el operador 8 = -§¡dz. Se discute el 
teorema del índice para tales superficies.
Palabras y frases clave. Superficie sobre anillos, cohomología, género, índice.

1. Introduction
A lot of research results have been obtained for the study of the compact 
Riemann surface [1], [2], [4], [5], [7]. These results, however, focus mainly 
on its function-theoretic property, but rarely on its topological property. In 
this paper, we consider the topological property for a special complex compact 
Riemann surface, namely, the ring surface with genus g. First in Section 2, we 
discuss its cohomology group solution by presenting some basic properties of
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the solution. Then in Section 3, we investigate its index property and arrive at 
two index theorems. And finally in Section 4, we study its spectral sequence 
of the Dolbeault double complex form.

2. Som e properties o f the cohom ology group solution on Tg

Let T 2 be the ring surface of genus g, namely, a complex compact Riemann 
surface. Let further 0  (Tg) represent the sheaf of germs of holomorphic func
tions on T 2, and 0* {Tg) the sheaf of germs of holomorphic functions which are 
never equal to zero on Tg. Then, H 1 (T2, 0* (T2)) represents the holomorphic 
line bundle group on Tg, called Picard group of T 2 and denoted by Pic T 2.

For the compact Riemann surface Tg, we have a sheaf exact sequence as 
follows

0 -► Z -» © (T2) 0* (T2) -► 0, 
where Z is the additive group of integers.

From the above exact sequence, we can obtain the cohomology exact se
quence

-> H°  (T2, 0* (T2)) -  H l {Tg, Z)  -  H1 (Tg, 0  (T2))

. - ^ i i 1 (r32, 0 ‘ (T2) ) ^ H 2 (T2, Z ) ^ .
Since T 2 is the compact Riemann surface with genus g, we have

f f l (T2, 0  (t ^ ) )  =  o > ,  H °  ( t 2, e* (r 2)) = z .

H° (Tg, Z)  = H 2 (T2, Z ) , H ! (T2, Z) =  Z2»,
And since H 1 (T2, 0* (T,2)) =  PicT 2, the above exact sequence becomes

_>Z — Z2 9 C 9 Pi cT2 Z .

Let Pic°T2 denote the image of exp* and N S  (T2) the image of S, also called 
Neron-Severi group [8] of T 2, respectively. Then we have

Theorem 2 .1 . For the ring surface T 2 of genus g, we have

Pic°T2 ~  C 9/ Z 2g, N S  (T2) ~  Z.

Now let us consider the following Dolbeault complex form on T 2,

0 -> © (T2) -U A0-0 (T2) A0’1 (T2) A0-2 (T2) -♦ 0,

where A0,q (T2) is the sheaf of germs of complex smooth (0, g)-forms on T 2 
(q =  0 ,1,2) and d =  §zdz. Letting H k (g) represent the Ar-order cohomology 
solution of the sheaf g, we have

Theorem 2.2. H 1 (0 (T2)) ~  H° (A0,1 (T2)) fd  (H° (A0-0 (T2)))  ,

H k ( 0  (T2)) =  0, k>  1.
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Proof. Consider the mapping d  : A0,0 (T2) —+ A0,1 (T2). Then herd =  © (T2). 
On the other hand, since d is a full mapping [6], namely, Imd =  A0,1 (Tjf), the 
sequence

0 - 0  (T2) -U A0’0 (T2) A0,1 (T2) -> 0 
is exact. And from this exact sequence, we can obtain the cohomology exact 
sequence

0 —* H ° ( 0  ( T g ) )  i  H °  (A0,0 (r32)) i  H °  (A0'1 (T2)) i

Hl (e (r2)) -  H 1 (a0-0 (r2))
Note that both A0,0 (T2) and A0,1 (T2) are strong sheaves. Therefore, we have 

H k (A0,0 (T2)) = H k (A0’1 (T2)) = 0 , fc > 1.

Consequently, the above exact sequence can be transformed to

o -  h ° (e ( r2)) -  h ° (a0,0 ( r2)) i  h ° (a0-1 ( r 2)) -  # 1 (0 ( r2)) -  0

0 -> H k (0 (T2)) -4 0, A: > 1.

Therefore, we finally have 
H l (0 (T2)) ~  (A0’1 (T2)) /kerS ~  H° (A0-1 (T2)) / d  (.H° (A°’° (T2) ) ) , 

(0 (T2)) =  0 , k >  1.

This completes the proof of Theorem 2.2. Ei

Next, let us consider the following Dolbeault complex form on T 2,

0 fi1 (T2) i  A1,0 (T2) ^  A1,1 (T2) ¿ 1 .  A1'2 (T2) =  0,

where ft1 (!T2) is the sheaf of germs of holomorphic 1-forms on T 2, and A1,9 (T2) 
is the sheaf of germs of complex smooth (1, g)-forms on T2 (q =  0,1,2), respec
tively. Since 8* =  -§idz, similarly, we have

Theorem 2.3. H 1 (fl1 (T2)) ~  (A2,i (T2)) /fl* (H° (A1’0 ( r 2) ) ) ,

( n l (T2)) ~  fcerF, (ft1 (T2)) = 0 , k > 1.

For the complex differential form on the Riemann surface T 2, we introduce the 
exterior differential operator d = d +  d, where

d  =  £ d z :  A « ( 3 i ) - A ^ ( 3 j ) ,  

d  =  J^ d f: A”-« (T2) -  Ap,9+1 (T2) .

On the other hand, using the Hermite gauge, we introduce the remainder dif
ferential operator

5 =  - * d *  =  - * ( d  +  d )*  =  V  +  V,
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where

V =  -  * 8* : Ap,q (T*) -> Ap~1,q (T2) ,

V =  -  * d* : Ap'q (T2) -> Ap,q~1 (T2) .

Now let A =  2 (dV +  Vd) represent the Laplace operator of d, and A =  
2 (8 V  +  V 8) the Laplace operator of d , respectively. By simple calculations, 
in fact we can arrive at that A =  A , A ( fd z )  =  0 if and only if A (f d z ) =  0. 
Therefore, we have

Lemma 2 .1 . The space of Harmonic forms on Tg is II0,1 (T2) ~  II1,0 (Tg)- 

Theorem 2.4 (Serre dual). H 1 (© (T2)) ~  H° (Q1 (T,*)).

Proof. Using the Dolbeault Theorem [4], we have

H1 ( e  (Tg)) c  H «■* (Ta2) , H°  (n1 (T|)) ~  4 ' 1 (Ts2) .
On the other hand, using the Hodge Theorem [4], we have

H i ’1 (Tl) C n 0'1 (Tg) , H 0/  (Tg) *  H1'0 (Tg) .

Then using Lemma 2.1, we have H 1 (© (Tg)) cz H° (fi1 (Tg)).
Ei

Theorem 2.5. H° (A0*1 (T2)) / d  (H° (A0-0 (T2))) ~  kerd*.

Proof. From Theorem 2.2, we have

H° (A0-1 (T2)) / d  (H° (A0-0 (T2))) ~  H 1 (© (T2) ) .

On the other hand, from Theorem 2.4, we have

H 1 (6  (Tg)) ^  H 0 (ii1 (Tg)) .

Then from Theorem 2.3, we have H° (Q1 (Tg)) ~  kerd*.

3. The index theorem  on th e  ring surface o f genus g
Now let us consider the Dolbeault complex form on T 2

o _  e  (Tg) i .  A0'0 (rs2) *1*  A0’1 (Tg) ^  A0'2 (T2) 0,

where V is the dual of d. Since the Laplace operator of d: A =  2 (8 V  +  V 8) is 
an elliptic differential operator, the above complex form is an elliptic complex 
form with index being [6]

Ind(S) =  £ ( - ! ) ' ’ dim

=  E  ( - l ) p dim n ° ’P (T2) =  dim n0>° (T2) -  dim n 0'1 (T2) 
p—0

=  1 ~9 , (3-1)
where g is the genus of Tg and dim n0,1 (T2) =  g [3].
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The above index property can be generalized. Let /z (T'2) be the set of all 
meromorphic functions on T 2. For a divisor D  given on T 2, we can define a di
visor sheaf ©d =  { /  E /x (T'2) |(/) > - D  }, where (/) represents the principal 
divisor of /. If D =  P  is a point divisor, then 0 jr> is the set of all meromorphic 
functions which have at most a single pole at P. If D  =  0, then ©d =  © C^g)- 
Furthermore, let [i* (T'2) represent the sheaf of germs of the meromorphic func
tions which are never equal to zero on T 2. Then, /z* (T'2) /©* (T<2) represents 
a divisor presheaf, and the divisor D € H° (/¿* (T2) /©* (T^)) represents a
family of D — (//,•,£*,■), where a,- € /z* (/¿¿), a»/«?- € ©* (Ui fit/,), UU{ =  T 2.

i y
The exact sequence of sheaves becomes

0 -  e -  (t 2) S  ( r 2) -  n' ( r 2) /e *  ( r 2) o,

from which we can obtain the long exact sequence

0 -* H °  (U* (T2)) H° (U* (T2) /©* (T2)) i» 1 (©* (T2))

H 1 (U* (T2)) -> t f 1 (tf* (T2) /©* (T2)) -  t f2 (0* (T2)) =  0. (3.2)

Recall that 0* (T2) is the sheaf of germs of the holomorphic functions 
which are never equal to zero on T 2. Using a result from [6], we have that 
H 1 (©* (T 2)) is the first-order cohomology group of the holomorphic line bun
dles which are never equal to zero on T 2.

If the divisor D € H° (U* (T 2) /©* (T 2)), then 6D  = [D] represents a holo
morphic line bundle whose connectivity function is gij — oti/otj € ©* (Ui fl Uj). 
Here, [D] is also called a holomorphic line bundle generated by the divisor D. 
Since [D ] is a complex line bundle, the first churn class C\ ([D]) e  H 2 (T2, Z ) , 
and dim H l (©* (T2)) can be measured by the first churn number [6]. Since 
any divisor D  can be constructed by the point divisors, we have

Lemma 3 .1 . Suppose that D  =  P  is a point divisor. Then [-P ]  =  L, 
where L is a natural line bundle on the Riemann sphere C P (  1) m S 2 : L =  
{(#, z°, z 1) \ ( z ° ,z l ) are the homogeneous coordinates of x on C P {  1)}.

Proof. Since D =  P  is a point divisor, we can choose the Riemann surface 

W  =  C P  (1) =  S 2 =  CU  {oo}

as the Riemann sphere. Note that C P  (1) can be covered by two open sets

£70 =  {[ J:o^ 1] s i ’ ( l ) | 2 V 0 }

and

i/1 =  { [z° ,2 1] e C P ( i J l z '^ O } .

Choose the point P  as P  =  [1,0]. Then, on U0, construct a meromorphic 
function a 0 ([z0,? 1]) =  z 11z °, which has a single pole exactly at the point P,
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and the divisor D =  P. Moreover, let cti =  1 on U\. Then the connectivity 
function of the bundle [P], defined on Uq D U\, is goi =  £*o/c*i =  z l /z° .

On the other hand, C P (  1) has a natural line bundle L, whose partial cross 
sections on the two domains Uq and U\ are cro =  (l, z1/^0) and cr\ =  {z® f z l , l)
[3], respectively. And the connectivity function of the bundle L is defined by 
a  =  9oi°o =  ( z ° / z l ) cr0, namely, go\ =  z ° f z l . By comparing the connectivity 
function of the bundle [P] to that of the bundle L, we have that the bundle [P] 
is the conjugate bundle of the bundle L, that is to say, for the point divisor P -1  
or — P  connected to the single pole P, we can have [—P] =  L. This completes 
the proof of Lemma 3.1. [?i

Note that the first churn class of the natural line bundle L of C P  (I) is the 
Kahler form on the complex manifold C P  (1), namely,

^  x —i dzAdz —1 dxAdy
C 1 (£ ) =  * - " l n  ( !  +  « )  =  5 3 7 7 — ^ 2  =  2 _L ’r ¿1r (1 -f zz) ^ (1 +  x2 4- yr)

and the first churn number (again denoted by C\ (L )) is
00 27r

W  TT J ( l +X2 + y2)2 n J  J  (1 + r 2)2
s* ' 0 0

Then C\ ([—P]) =  C\ (L ) =  — 1, from which we have

Corollary 3 .1 . Suppose that the Riemann surface W  has only a point divisor 
D  =  P. Then dim H l (0* (W)) =  Cx ([P]) =  -d e g  (P) =  1.

Corollary 3.2. For any divisor D on W , dim H 1 (0* (W)) =  C\ ([D]) =  — 
deg[D\, where deg[D\ represents the degree of the divisor D.

From Corollaries 3.1 and 3.2, we obtain

Theorem 3 .1 . Suppose that D  is the divisor on the compact Riemann surface 
Tjj of genus g. Then

dim H° (£/• (Tg) /&• (Tg)) -  dim H l ( V  (T2) /e *  (Tg)) = d e g ( D ) - g  +  1.

Proof. From [6], we have the Euler number of the exact sequence in (3.2) is 0, 
i.e.,

X (H ( t r  (Tg))) - x ( H  ( i r  ( r 2) /e *  ( r 2))) -  dim h 1 (e -  ( r 2)) =  o.
From Corollaries 3.1 and 3.2, we have

dim H° (U* (T2)) -  dim H l (U* (T2)) -  dim H° (IJ * (T2) /©* ( r 2))

+  dim H 1 (U* (T2) /0* (Tg)) +  deg(D) =  0. (3.3)

Then, inserting dim H° (U* {T*)) =  1 and dim H 1 (U* (T2)) =  g [5] in (3.3) 
leads to

dim H°  (CT (Tg) /e *  (Tg)) -  dim H 1 (£/* (T2) / O ’ (Tg2)) =  deg(Z)) - g  +  1.
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Ei

In particular, when the divisor D  =  0, Theorem 3.1 reduces to the index 
theorem represented by (3.1). Moreover, when the divisor D =  0, and the 
genus <7=1, Theorem 3.1 reduces to Theorem 5 in [9].

From Theorem 3.1 we have

Theorem 3.2. Suppose that D is the divisor on T2. If deg(D) > 2g —2, then 
dim H 1 ( V  (Tj)  /e* (r92)) = 0.

4. The spectral sequence o f the D olbeault double com plex  
form on the n  dim ensional com plex ring surface T n

Combining the operators d  and d  on the complex ring surface T n, we can 
obtain the d — 5 double complex form
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A0,0 (Tn)
a A0’1 (Tn) y A0’2 (Tn) ¿J

i d 1 5 1 5

A1-0 (T n)
¿J A1,1 (Tn) 0 A1-2 (T n) 0

i d i d 1 5

A2’0(T n} d A2’1 (Tn) a 2,2 ( r n) 0̂

i d 1 5

Define
z i j  (r n) =  G AtJ (T n) | d£ =  0, 5£ =  0, i , j > l ] ,

B U (Tn) =  { d d V - l 'j - 1 (T n) Ii, j  > 1}  ,

H U (Tn) =  Z {'j  (Tn) / B i,j (Tn) .

Then, obviously we have

Theorem 4 .1. Given r € N  and r < n .  Then

H (  © A« (T") \ =  © H (AiJ (T")) = © W'i  (T").
/  i + j = r  i + j —r

Given r G N. Let
Tr {Tn) =  © Ai J (Tn),

i + j = r

and

FpTr (Tn) =  © Ai,r-i (Tn) , 1 < p < r .
0<i <p

Then we have

F pTt (T n) < Fp+1Tr (Tn) <  Tr (Tn) , (*)
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namely, F is a filter of Tr (T n). Then we can obtain the commutative diagram 
as follows

F p~lTr (T n) 2+ F pTr+1 (T n) 

i r j  i v

FpTr (T n) -2» F p+1Tr+1 (T")
|  7T |  7T

fij>,r-p Ap+1,r- p (Tn)

where 77 is an imbedding mapping, and 7r a natural surjection homomorphism, 
respectively. Prom the short exact sequence

0 _> Fp~l Tr (Tn) FpTr (Tn) ^  Ap,r-p (Tn) -> 0,

we can obtain the cohomology exact sequence

(T n) (Tn) ^
0 < i< p - l  0<t<p ■

H P , r - p  £ _ >  0  # i , r - i + l  ( jm j  _
0<t<p

Furthermore, from the above exact sequence, using the Massey method [10] we 
can obtain the Lerry spectral sequence

s > i ,
V P>r~P )

where
£p,r-pc n  =  ( r n),

V

is the cohomology mapping induced by

dPtr-.p:Ap’r- p (T n) -» (T n),

and

E l r - p  ( r n) =  i f  « r-p) =
^p,r—p "p,r—p— 1

• • • , ̂ . r - p  c n  =  H  (£;,-r-p) =  oT T —  •
p̂.i—p up,r—p— 1

Here 7/ is the cohomology functor.
Note that the filter (*) is finite, namely,

0 =  F - ' T r  (T n) C (T n ) C  • • • C F pr r ( r n) C • • • C F rTr ( T n) =  Tr (T n) .

Hence, from [10], we have that for 1 <  p <  r  <  n € N, there exists a certain 
number s such that
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(1)
E sp<r_p (Tn) =  E sp?_ p (Tn) =  • . . .

(2)

Ep r_p (Tn) =  FPH (Tr (Tn)) / Fp~l H (Tr (T n))

=  Fph (  © AiJ {Tn) \  /F p~l H (  © AlJ  (Tn)
\i+ j= r )  \i+ j=r

=  FP © W 'i (Tn) / F p~l © H i'j {Tn)
i+ j—r i+j=r

=  © (Tn) / © (Tn)
0<t<p— 1

=  H p,r~p (Tn)

= ^ , r - P( r n).

Therefore, we finally have

Theorem 4.2. For the d —d double complex form on the n dimensional complex 
ring surface T n, the Lerry spectral sequence

I  P , r — p )

converges to E^r_p (T n) =  (T n).
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