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A b s t r a c t .  Goodstein’s function Q : N —*• N is an example of a fast growing 
recursive function. Introduced in 1944 by R. L. Goodstein [9], Kirby and Paris
[12] showed in 1982, using model theoretic techniques, that Goodstein’s result 
that Q is total, i.e., that G{n) is defined for all n € N, is not a theorem of 
first order Peano Arithmetic. We compute Goodstein’s function in terms of 
the Lob-Wainer fast growing hierarchy of functions; from this and standard 
proof theoretic results about this hierarchy, the Kirby-Paris result follows im­
mediately. We also compute the functions of the Hardy hierarchy in terms of 
the Lob-Wainer functions, which allows us to provide a new proof of a similar 
result, due to Cichon [2].
Key words and phrases. Goodstein function, Hardy hierarchy, fast growing hier­
archy, Peano Arithmetic.
2000 Mathematics Subject Classification. 03F30, 03D20.

R esum en . La función de Goodstein Q : N —♦ N es un ejemplo de una función 
recursiva de crecimiento rápido. Introducida en 1944 por R. L. Goodstein [9], 
Kirby y Paris [12] demostraron en 1982, usando técnicas de teoría de modelos, 
que el resultado de Goodstein de que Q es total, es decir, que G(n) está definida 
para todo n G N, no es un teorema de la Aritmética de Peano de primer orden. 
Calculamos la función de Goodstein en términos de la jerarquía de funciones de 
crecimiento rápido de Lob y Wainer; usando esto y resultados clásicos de teoría 
de la demostración acerca de esta jerarquía, el teorema de Kirby y Paris se 
sigue de inmediato. También calculamos las funciones de la jerarquía de Hardy 
en términos de las funciones de Lob y Wainer, con lo que obtenemos una nueva 
demostración de un resultado similar, debido a Cichon [2].
Palabras y frases clave. Función de Goodstein, jerarquía de Hardy, jerarquía de 
crecimiento rápido, aritmética de Peano.
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1. Introduction
Goodstein sequences were introduced in 1944 by Rueben Louis Goodstein [9], 
who proved that every such sequence is eventually zero. In 1982, Kirby and 
Paris [12] used model theoretic techniques (the method of indicators) to show 
that Goodstein’s result, a first order statement in the language of arithmetic, 
is nevertheless not a theorem of first order Peano Arithmetic PA. Goodstein’s 
function Q : N —* N assigns to each n the first m  such that the Goodstein 
sequence corresponding to n becomes zero from m  on. In this paper we present 
a computation of Goodstein’s function in terms of a classical “fast growing” 
hierarchy of functions due to Lob and Wainer, see Theorem 1 .1 1 .  This is a 
well studied hierarchy, and the Kirby-Paris result is an immediate corollary 
of our computation and standard proof theoretic results about this hierarchy. 
A similar proof of the Kirby-Paris result was obtained by Ciclion [2] using 
a different hierarchy originally introduced by Hardy. It is straightforward to 
compute the functions of the Hardy hierarchy in terms of the Lob-Wainer 
functions, and this calculation and Theorem 1 .1 1  provide us with a new proof 
of Cichon’s theorem, see Corollary 1.16.

This paper is organized as follows: In Subsection 1.1 we describe Good­
stein’s function, recall the definition of the Lob-Wainer hierarchy and the proof 
theoretic results (due to Wainer [16]) that we need, and state our main result, 
Theorem 1 .11 . In Subsection 1.2 we recall the definition of the Hardy hier­
archy and derive Cichon’s result from Theorem 1 .1 1 . Section 2 is devoted to 
the proof of Theorem 1 .1 1 ; it is perhaps interesting to note that the argument 
organizes itself in a natural way as a transfinite induction of length eo- Finally, 
in Section 3 we briefly mention how the results of Kirby and Paris [12] follow 
from Theorem 1 .11 .

We want to thank William Sladek, whose interest in Goodstein’s theorem 
and its unprovability in PA led to this paper.

1.1. Goodstein’s theorem. Goodstein’s theorem [9] provides a nice example 
of a finitary combinatorial result that cannot be proven without an explicit 
appeal to infinite sets, see Kirby and Paris [12]. This claim requires some 
explanation.

We assume acquaintance with the basic theory of ordinal numbers; the reader 
may find an introduction in almost any textbook in logic or set theory, like Cori 
and Lascar [3] or Kunen [13]. Recall that eo is the first ordinal a  such that 
a  =  oja (ordinal exponentiation).

For the reader not familiar with Peano Arithmetic PA or formal logic, it 
suffices to say any natural number theoretic statement can be easily expressed 
in the language of PA, and that PA is an appropriate formalization of the 
intuitive concept of “finitary mathematics” , thus showing that PA cannot prove 
a statement S  means that it is unavoidable to invoke infinite objects in any 
proof of S.
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GOODSTEIN’S FUNCTION 383

We can make the above more precise in two ways: First, that PA captures 
finitary mathematics can be argued as follows: Recall that ZFC is the standard 
list of axioms for set theory, in which all of classical mathematics can be easily 
formalized, and is the accepted framework for carrying out such a formalization. 
Let ZFCfin be the theory that results when the axiom of infinity (“there are 
infinite sets” ) is removed from ZFC and replaced with its negation (“every set 
is finite” , i.e., every set is in bijection with a natural number; formally this 
is stated as saying that there are no limit ordinals). Then it is easy to see 
that PA is bi-interpretable with ZFCf,n, which means that both theories are 
exactly the same, only stated in slightly different languages. Precisely: One 
can define recursive translations t and t' between the language of arithmetic and 
the language of set theory so that if (p is a theorem of PA, then its translation 41)1 
is a theorem of ZFCfin and, conversely, if ip is a theorem of ZFCfin, then ip1 is a 
theorem of PA. Moreover, for any sentence (f> in the language of arithmetic, PA 
proves that (p is equivalent to (0t)t , and similarly for statements in the language 
of set theory and ZFCfjn. This argument provably comes from Ackermann
[1]. A different justification of PA as the appropriate formalization of finitary 
mathematics can be found in the works of Gentzen, see [7] and [8], where the 
connection between PA and the ordinal Co is highlighted.

Second, PA is sufficiently powerful to appropriately code and discuss some 
infinite sets; for example, any ordinal below Co is formalizable inside PA, mean­
ing in particular that if a  < eo and an arithmetic statement can be proven 
by finitary means together with an appeal to transfinite induction of length a, 
then the statement can be proven in PA. Precisely: The subsystem ACAo of sec­
ond order arithmetic is conservative over PA for arithmetic sentences, but can 
refer to and discuss infinite objects. The infinite sets that can be appropriately 
discussed in ACAo are usually called predicative. That predicativism as under­
stood by Weyl [17] is captured by ACAo follows from work of Feferman, see [5] 
and [6]. That ACAo is conservative over PA means that PA follows from ACAo 
and any arithmetic statement provable in ACAo (perhaps by explicit appeal to 
infinite objects) can also be derived purely within PA. For a discussion of ACAo 
and related theories, Simpson’s monograph [15] is highly recommended.

Thus, if one shows that a statement S  is not provable from PA, it follows 
that any proof of 5  must make explicit use of infinite, in fact, impredicative 
objects. Goodstein’s theorem is an example of one such statement. It states 
that Q{n) is defined for all n, where Q, Goodstein’s function, is the number of 
steps that a certain process takes with input n before it halts. To describe the 
process, we need a couple of definitions.

Definition 1 . 1 .  The depth-1 base b representation of n G N is just the usual 
base b representation of n:

n =  bmini -i-------h bmknk ,

where m i > • • • > m* >  0 and 1 < n* < b for each i.
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384 ANDRÉS EDUARDO CAICEDO

By replacing each m* with their base b representation we obtain the depth-2 
representation of m. In general, the depth-(m -I- 1 ) representation is obtained 
by replacing each m* with their depth-m base b representation (so we iterate 
taking base b representations m +  1 times).

For example, the depth-1 base 2 representation of 266 is 28 +  23 +  21 , its 
depth-2 base 2 representation is 22 +  22 +1 -f-21 and so its depth-3 (or higher) 
base 2 representation is

As with 266, notice that for any n and b, as m  increases, the depth-(m +  1) 
base b representations of n eventually stabilize. (It is something of a tradition 
to mention 266 when discussing Goodstein’s theorem, after one of the examples 
highlighted in Kirby-Paris [12].)

Definition 1 .2 . We call this stable representation the complete base b repre­
sentation of n € N (this is sometimes called the super base b representation of

Definition 1 .3 . The change of base function Rb : N —» N takes a natural num­
ber n, and then replaces every b with b+ 1 in the complete base b representation 
of n.

i?2 (266) =  333+1 +  33+1 +  3 =  443426488243037769948249630619149892887.

Definition 1.4 . The Goodstein Sequence beginning with n, (n)fc, is defined by 
(n) i =  n and for k >  1 ,

For example, the sequence for n =  3 is 3 ,3 ,3 ,2 ,1 ,0 ,0 ,...

Definition 1 .5 . The Goodstein Function Q : N —> N is defined to be the 
smallest number k for which (n)k =  0.

The main result of Goodstein [9] is the following:

Theorem 1.6 . The function Q is well defined, i.e., Q(n) exists for all n.

Here are the first few values of the function Q:

266 =  22' +1 +  22+1 +  2.

n).

Thus

{n)k >  0 
(n)* =  0.

0(0) =  1
G( 1 ) =  2
G( 2) =  4
Ç(3) =  6
Ç(4) =  3 . 24026532ii _  2 «  6.895 x io121210694.

Volumen 41, Número 2, Año 2007



GOODSTEIN’S FUNCTION 385

Contrast £(4) with the number of elementary particles in the universe, which 
is estimated1 to be below 1090; the number of digits of £7(5) is much larger than 
£?(4). Q is clearly a recursive function (i.e., there is a finite algorithm that from 
input n allows us to compute G{n)); however, the values of Q grow incredibly 
fast, so fast that Q in fact eventually dominates any recursive function that PA 
can prove is defined for all inputs. This was originally proved by Kirby and 
Paris [12].

We prove Theorem 1.6 by presenting an “explicit” formula for G(n). It is as 
explicit as it is reasonable to expect; it describes Q{n) in terms of the functions 
f a of the fast growing hierarchy.

Any ordinal a  < eo can be written in a unique way as a =  0^(7 +  1) where 
(3 < a. By transfinite recursion, define for limit q < co an increasing sequence 
d(a, n) cofinal in a  by setting

,, \ b f u}Sn if 0 —  ̂+ 1 ,(a,n) — uj wd(0,n) ^ js

The fast growing hierarchy (f Q)a<e0 ° f  functions /  : N —► N, due to Lob and 
Wainer [14], can now be defined as follows:
Definition 1.7.

(1) fo(n) =  n +  1.
(2) For a  < €0, f a+i{n) =  /a(n)i where the superindex indicates that f a 

is iterated n times.
(3) For limit a  < e0, f a {n) -  f d(a,n){n).

For example: fi(n)  =  2n, f 2{n) =  n2n and f$(n) is (significantly) larger 
than a stack of powers of two of length n\ f ii}(n) =  f n(n) grows like (the 
diagonal of) Ackermann’s function, and f wU32(n) =  /ww3+wU,2n(n), which itself 
requires some amount of time and effort to be computed. We caution the reader 
not to confuse the nth iterate f n(m) of a function /  applied to m with the nth 
(multiplicative) power /(m)n of the number /(m).

For f ,g  : N —► N, say that /  is eventually dominated by g iff for all but 
finitely many values of n, f(n) < g(n). Proofs of the following statements can 
be found in Wainer [16]:
Fact 1.8.

(1) Each f a is strictly increasing.
(2) If a  < 0  < €q then f a is eventually dominated by fp.
(3) Each f a is recursive, and provably total in PA.

Let Co =  0 and Cfc+i =  ujC,k- The following is the main result of Wainer [16]:
Theorem 1.9. If f  is a recursive function, provably total in /S^+i (Peano 
Arithmetic with the induction axiom restricted to 2/c+i -formulas), then f  is 
eventually dominated by some f a , a  <  Cfc+i- particular, any recursive f  
provably total in PA is eventually dominated by some /a , a  < eo- $

1S ee  for e x a m p le  h t tp : / /w w w .c s .u m a s s .e d u /~ im m e r m a n /s ta n fo r d /u n iv e r s e .h tm l
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386 ANDRÉS EDUARDO CAICEDO

Definition 1 .10 . Let R^(m) be the “change of base” function replacing each 
n by w in the complete base n representation of m; for this, we express m  as a 
decreasing sum of powers of n, so the resulting ordinal is written in its
Cantor normal form.

For example, since 266 =  33+2 +  32 • 2 +  3 -f 2, then

i*3 (266) =  u w+2 +  uj22 +  u  +  2.

We can now state the main result of this paper, describing Goodstein’s function 
in terms of the functions f a .

Theorem 1 . 1 1 .
(1) Let

n  =  2mi 4- 2m2 H------1- 2nik

where m \ > m 2 > • • • >  mfc. Let a* =  R ^in ii). Then

S ( n ) = / ° . (/«„ (..•(/« . (3))...)) - 2 .

(2) More generally, let Qb{n) be defined as Q, but we start by writing n in 
baseb rather than 2, so (if not 0) (72)2 =  Rb(n)  — 1, (71)3 =  # 6 + 1  ( (71)2 ) —
1, etc. Let

n  =  bm ' n i  H-------- (- 6mfcn* ,

where m i >  • • • >  and 1 <  nk < b be the base b representation of 
n. Let a i  =  R%(mi ) .  Then

&(n) =  / " ' ( / £  ( ... ( / s ;  (6 +  1)) . . . ) ) -  6.

For example, (7(266) =  fu»+i(fu+i{6)) — 2, because 266 =  222+1 +  22+1 4- 21 
and /i(3) =  6. Similarly,

0(4) =  f u(3) -  2 =  f 3(3) -  2 =  3 • 23 • 23'23 . 23'23-23 23 -  2. ’

Goodstein’s Theorem 1.6 follows at once from Theorem 1 .11 . As mentioned 
above, Theorem 1 .1 1  also gives immediately as corollaries the unprovability 
results of Kirby and Paris [12], see Section 3.

1.2. The Hardy hierarchy. Goodstein’s sequences can be defined in at least 
two ways. As opposed to how we define them here, one can also define them by, 
at each step, subtracting one from the current number and then increasing the 
current base. Call g (n )  the corresponding Goodstein’s function. The reader 
should have no problem showing that the following holds:

Fact 1 .12 .
(1) g is total iff Q is total.
(2) Assume that g is total. For any n  6 N, g(n  +  1) =  G{n) +  1.
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Our computation of Q in terms of a fast growing hierarchy is not the first 
one: Cichon [2] analyzed g and found a formula for it in terms of the Hardy 
hierarchy (called this way after being introduced by Hardy [10] in order to 
‘exhibit’ a set of reals of size Hi), see also the paper [4] by Fairtlough and 
Wainer. The Hardy hierarchy of functions is defined as follows:

Definition 1 . 13 .
(1) H0{n) =  n.
(2) For oc < e0, Ha+1(n) =  Ha (n +  1).
(3) For limit a  < €0, Ha (n) =  Hd(a,n+i)(™)-

One can easily provide an explicit computation of the members of the Hardy 
hierarchy in terms of the functions /a ; the following is obtained directly from 
the definitions by a straightforward induction on a:

Theorem 1.14 . For 0 < a  < €q, let

a  =  u ^no  H---- + uA nk

be the Cantor normal form of a, so a  > (3q >  • • • > Pk and ti* > 0 for all i. 
Then

Ha(n) =  Q ( .  . . ( / £ ( "  + 1))  .- ••)-  1- &

In particular,

(I) Hwa (n) =  /Q(n 4-1) — 1 

and we have the following:

Corollary 1 .15 .  If a >  @ then Ha o Hp =  Ha+p-

Cichon’s computation, Corollary 1.16 below, is an immediate consequence 
of Theorems 1 .1 1  and 1.14.

Corollary 1 .16  (Cichon [2]). For all n € N, g(n) =  1). Ef

Formula (1) is proven in Fairtlough and Wainer [4] (among other places). 
Actually, (1) is stated there in terms of a slightly different hierarchy (Fa)a<Co, 
where it takes the form Hu* =  Fa . This hierarchy is also used in the paper
[II] by Ketonen and Solovay; a straightforward induction from the definition 
given in [4] establishes the identity

Fa {n) =  f a {n +  1) -  1

so, in terms of the Fa, Theorem 1.14 takes the form

» . ( » ) - * 3 ?  ( •■ • ( is r o * ) ) .» )

for o r ,  Po,. . .  as above.
Of course, Corollary 1.15  can also be proven directly from the definition. We 

caution the reader that the result as stated in [4, Lemma 2.17] (that the identity
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holds for all a, ¡3) is incorrect, since for ¡3 limit, the identity d(a +  ft, n) =  
a  4- d((3, n) may fail (consider for example a  =  1 and ¡3 =  uj ) .

Using Corollary 1.15  one may recover Theorem 1.14 by first arguing by 
induction on a  that Hwa =  Fa and then considering the Cantor normal form 
of an arbitrary ordinal below eo- Assuming Cichon’s Theorem 1.16, this gives 
a different proof of Theorem 1 .11 .

What differentiates our argument from Cichon’s is the analysis at limit or­
dinals that leads to Lemma 2.8.

2. The proof
To prove Theorem 1 .1 1  it is better to work in terms of Ba{n), the first base 
for which we reach zero when we start the process with the complete base a 
representation of n. Clearly, B2(n) =  G{n) +  1.

Lemma 2 .1. For any a and any m, B a(am — 1) =  fri%(m)(a) — 1.

Example 2.2. Using Theorem 1 .1 1  we can compute £(15) as

e(15) =  /u,+ 1(/„(/1 (/0(3))))-2 ,

while using Lemma 2.1 gives us
£(15) =  £ ( 1 6 - 1 )  =  /wu,(2 ) -2 .

It may be instructive to reconcile both expressions: Notice that /o(3) =  4 and 
/i(4) =  8 =  /2(2) =  /w(2), so the first expression simplifies to

5(15) =  /„+ , [Jl(2)) -  2 =  J l +i(2) -  2 =  /„+,(2) -  2.

Finally, we use Definition 1.7 repeatedly to find

M 2 )  =  M 2 )  =  / „ a(2) =  / „ « (  2).

Assuming Lemma 2.1, Theorem 1 . 1 1 is immediate by induction on k. For
example, to prove item (1), just notice that (n)2 =  3R2 m̂i  ̂H------|_3^a(mfc) _  1
and (i?2(m)) =  Rgim)  for any m.

We now proceed to the proof of Lemma 2.1. This requires a transfinite 
induction of length €o-

Definition 2.3. For a < eo we define exponential polynomials pa (x) by induc­
tion: If a  >  0, let

a  =  uAno H------ f- u 0knk
be the Cantor normal form of a, so q > /?o > • • • > and n* > 0 for all i.

Define N (a)  to be the largest integer mentioned in the Cantor normal form 
of a, so N(n) =  n for n < u j and, inductively,

N {a) =  max {N((30) ,. . . ,  N {0k), n0, . . . ,  nk} .
Set

pa {x) =  xP0o ^ n o  -1----- 1- xP0̂ x^nk,
where pn(x) =  n for all n € u j .
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Definition 2.3 obviously implies the following inequality and identity.

Lemma 2.4. N  (Ra(m)) < a and p ^ ( m)(a) =  m for all a, ra. Ef

By Lemma 2.4, Lemma 2.1 follows immediately from the following, to which 
we devote the rest of this section.

Lemma 2.5. For all a  <  eo and all a >  N(a), Ba (aP a — l) =  f a {o) ~ 1*

Proof The proof is by induction on a. For a  =  0 the result is clear.
A ssum e the result for a ,  and argue for a  +  1: p«+i(a) =  p a (a;) +  1 so  

a pQ+i(a) _ i  =  aPa(«)(a _  l )  +  a p“ W  _ i  and th e  indu ction  hyp oth esis g ives th a t

Ba -  l )  =  ( ( /„  (a) -  (a -  1))

which, for a > 1, equals Bf0(a) (/Q (a)Pa^ai'a^ (a — 2) +  f a .
A straightforward induction, the base case of which we just displayed, now 
shows that for k < a — 1 ,

Ba (ap‘*'M  - 1) =  ( ( / ¿ +1 (a) -  l ) p"W +' <a)_l) (a -  1 -  fc)) ,

so in particular for k =  a — 1, B a (aPQ+1̂ a  ̂ -  l) =  B f a ^ _ i (0) =  /Q+i(a) — 1, 
as wanted.

To treat the limit case we need a preliminary definition, compare with Ke- 
tonen and Solovay [11].

Definition 2.6. Define a  —► /3, for 0  < a  < eo, iff there is a sequence c*o >
n

«1 > • • ’ > otk where Qo =  a, &k =  0  and f°r aM i < k, either c*i is successor 
and a,+i =  a,-, or else ct* is limit and cti+i =  d(ai,n).

A straightforward induction using Definition 2.3 shows the following:

Lemma 2.7. / / « —►/? then N(a) > N(0), f a {o) =  and, if a > N(a),a
then pQ{d) =  Pp{a)- ^

Suppose now that a is limit and the result holds for all (3 < a. As before, 
apQ(o) — i — aPQ(a)- 1 (a — 1) +  ap°(a)- 1  — 1. Let 7 =  R£(pa {a) ~  1)* Then

Ba (a"“««) -  l )  =  BA(a)- ,  ( ( / 7 (a) -  i)^< A («)-0  (a  _  i ) )  , 

and induction shows that for k <  a — 1 ,

Ba -  l )  =  ( ( / r‘ +1 (a) -  j ) " “

so in particular for k =  a — 1 we have

Ba -  l )  =  / »  -  1 =  fRtip„M - i n i ( a )  -  1.

Lemma 2.8. For all nonzero a  < eo and alia >  N (a) ,  a  —> {pa {o) —1) +  1.a
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By Lemma 2.8, a  —► R%(pa (a) — 1) +  1. By Lemma 2.7,
a

faifl) =  f  R%(pa(a)—l)+ l(a )> 

and the result follows. Ei

All that remains is to prove Lemma 2.8, to which we now turn.

Proof. Once again, the argument is by induction. If a  =  0  +  1 , in particular if 
a  =  1 , then pa (a) =  pp{a) -I- 1 and R^ip^a)) =  (3, as long as a >  N({3), i.e., 
a > N(a).  Thus, R%(pa (a) — l) +  l =  / 3 - f l= o ;in  this case, as wanted.

Now suppose that a is limit and the result holds below a. By induction, 
we may as well assume that a  =  uj13 for some nonzero 0  < a. In particular, 
/3 -* R Z M a )  -  1) +  1 if a > N (a) > N{(3).

a
We have pa(a) — 1 = aP0^  — 1 =  aP0^ ~ 1(a — 1) +  aP0^ ~ l — 1 and 

K  (Pa (a) -  1) +  1 =  (a -  1) + J £  -  l )  +  1.

Let 7 =  R%(pp(a) — 1). Since ¡3 < a, by the induction hypothesis ¡3 —► 7 +  1
a

(so 7 < ¡3 and —► cj7+1) and
a

w* (ap̂ (a) -  l)  +  1.

Then

uj0 -♦ w7+1 -* w7a =  w7(a -  1) +  a;7 -> w7(a -  1) +  fa p̂ (a) -  l )  +  1.
a a a \  /

Finally, by Lemma 2.4, p7(a) =  p/j(a) — 1. This completes the proof. Ei

3. G and PA
An easy combinatorial argument (considering “walks” from larger ordinals to 
smaller ones along the sequences d(a , n)) shows that to prove that the sequence 
(/«) Q<eo is strictly increasing in the eventual domination order, it suffices to 
show that if a  is limit and n <  m, then fd(a,n)(k) < fd(a,m){k) whenever 
k >  n ,N (a).  This leads to considering the relation —» and Theorem 1 .1 1  can

n
be seen as a result of this analysis. A similar analysis of eventual domination 
is in Ketonen and Solovay [11], although the details vary somewhat, since the 
argument is carried out in terms of the sequence (Fa )a<eo.

From Theorem 1 .1 1  and Wainer’s Theorem 1.9 it follows immediately that 
Q is not provably total in PA, since it is easy to see that Q eventually dominates 
each f a . For m € u  define the m-Goodstein sequence beginning with n as (n)jt 
above, but now instead of complete base b representations use only depth-(m +  
1) base b representations. The proof of Theorem 1 .1 1  also gives at once that the 
resulting function Qm eventually dominates each f ay a  <  Cm+i> and therefore 
Qm is not provably total in J £ m+i, although Qm has rate of growth comparable
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to that of /{m+1 and so it is provably total in / £ m+2- Similarly, Theorem 1' of 
Kirby and Paris [12] follows at once from the argument of Theorem 1.11 .
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	Goodstein’s function

	California Institute of Technology, Pasadena, USA.

	{n)k > 0 (n)* = 0.

	,, \ b f u}Sn if 0 — ^ + 1,

	(1)	fo(n) = n + 1.

	S(n)=/°. (/«„ (..•(/«. (3))...)) -2.



	».(»)-*3? (•■•(isro*)).»)

	5(15) = /„+, [Jl(2)) - 2 = Jl+i(2) - 2 = /„+,(2) - 2.

	M2) = M2) = /„a(2) = /„«( 2).



