Nonderogatory directed windmills

Molinos de viento dirigidos no derogatorios

Juan Rada^a

Universidad de Los Andes, Mérida, Venezuela

ABSTRACT. A directed graph G is nonderogatory if its adjacency matrix A is nonderogatory, i.e., the characteristic polynomial of A is equal to the minimal polynomial of A. Given integers $r \ge 2$ and $h \ge 3$, a directed windmill $M_h(r)$ is a directed graph obtained by coalescing r dicycles of length h in one vertex. In this article we solve a conjecture proposed by Gan and Koo ([3]): $M_h(r)$ is nonderogatory if and only if r = 2.

Key words and phrases. Nonderogatory matrix, characteristic polynomial of directed graphs, directed windmills.

2000 Mathematics Subject Classification. 05C50.

RESUMEN. Un grafo dirigido G es no-derogatorio si su matriz de adyacencia A es no-derogatoria, es decir el polinomio característico de A es igual al polinomio minimal de A. Dados enteros $r \ge 2$ y $h \ge 3$, el molino de viento dirigido $M_h(r)$ es un grafo dirigido que se obtiene por medio de la coalescencia de r diciclos de longitud h en un vértice. En este artículo resolvemos una conjetura propuesta por Gan y Koo ([3]) : $M_h(r)$ es no-derogatorio si, y sólo si, r = 2.

Palabras y frases clave. matriz no-derogatoria, polinomio característico de grafos dirigidos, molinos de viento dirigidos.

1. Introduction

A digraph (directed graph) G = (V, E) is defined to be a finite set V and a set E of ordered pairs of elements of V. The sets V and E are called the set of vertices and arcs, respectively. If $(u, v) \in E$ then u and v are adjacent and (u, v) is an arc starting at vertex u and terminating at vertex v.

Let $\mathcal{M}_n(\mathbb{C})$ denote the space of square matrices of order n with entries in \mathbb{C} . Suppose that $\{u_1, \ldots, u_n\}$ is the set of vertices of G. The adjacency matrix of G is the matrix $A \in \mathcal{M}_n(\mathbb{C})$ whose entry a_{ij} is the number of arcs starting

^aFinancial support was received from CDCHT-ULA, Project No. C-13490505B.

JUAN RADA

at u_i and terminating at u_j . The characteristic polynomial of G is denoted by $\Phi_G(x)$ (or simply Φ_G) and it is defined as the characteristic polynomial of the adjacency matrix A of G, i.e., $\Phi_G(x) = |xI - A|$, where I is the identity matrix.

The monic polynomial of least degree which annihilates A is called the minimal polynomial of G and is denoted by $m_G(x) = m_G$; it divides every polynomial $f \in \mathbb{C}[x]$ such that f(A) = 0. In particular, by the Cayley-Hamilton Theorem, $m_G(x)$ divides $\Phi_G(x)$. Moreover, $\Phi_G(x)$ and $m_G(x)$ have the same roots.

A digraph G is nonderogatory if its adjacency matrix A is nonderogatory, i.e., if $\Phi_G(x) = m_G(x)$; otherwise, G is derogatory. For example, dipaths P_n , dicycles C_n , difans F_n and diwheels W_n are classes of nonderogatory digraphs. These classes of digraphs have been studied by Gan, Lam and Lim ([2],[4] and [5]). More recently ([3]), Gan and Koo considered the problem of determining when the directed windmills are nonderogatory.

Let h, r be integers such that $h \ge 3$ and $r \ge 2$. A directed windmill $M_h(r)$ is the directed graph with r(h-1) + 1 vertices obtained from the coalescence of r dicycles of length h in one vertex (see Figure 1).

FIGURE 1. The directed windmill $M_h(r): r$ copies of the dicycle C_h .

Gan and Koo showed that $M_3(r)$ is nonderogatory if and only if r = 2. Moreover, they conjectured that for every $h \ge 3$

 $M_h(r)$ is nonderogatory $\Leftrightarrow r=2$.

In this paper we show that this conjecture is true.

Volumen 42, Número 1, Año 2008

2. Nonderogatory directed windmills

Recall that a linear directed graph is a digraph in which each indegree and each outdegree is equal to 1 (i.e. it consists of cycles). The coefficient theorem for digraphs ([1, Theorem 1.2]) relates the coefficients of the characteristic polynomial with the structure of the digraph.

Theorem 2.1. Let

$$\Phi_G(x) = x^n + a_1 x^{n-1} + \dots + a_{n-1} x + a_n$$

be the characteristic polynomial of the digraph G. Then for each i = 1, ..., n

$$a_i = \sum_{L \in \mathcal{L}_i} \left(-1 \right)^{p(L)} ,$$

where \mathcal{L}_i is the set of all linear directed subgraphs L of G with exactly i vertices; p(L) denotes the number of components of L.

Lemma 2.2. The characteristic polynomial of $M_h(r)$ is

$$\Phi_{M_h(r)} = x^{r(h-1)+1} - rx^{r(h-1)+1-h} = x^{r(h-1)+1-h} \left[x^h - r \right]$$

Proof. This is an immediate consequence of Theorem 2.1.

Let G be a directed graph and $A = (a_{ij})$ its adjacency matrix. By a walk of length k in G we mean a sequence of vertices $v_0v_1 \cdots v_k$ in which each (v_{i-1}, v_i) is an arc of G. It is well known that the number of walks of length k between two vertices v_i and v_j of G is $a_{ij}^{(k)}$, the entry ij of the power matrix A^k ([1, Theorem 1.9]).

Theorem 2.3. $M_h(r)$ is nonderogatory if and only if r = 2.

Proof. The characteristic polynomial of $M_h(2)$ is

$$\Phi_{M_h(2)} = x^{h-1} \left(x^h - 2 \right) \, .$$

Let $f(x) = x^{h-2} (x^h - 2)$ and $A = (a_{ij})$ the adjacency matrix of $M_h(2)$. From the structure of $M_h(2)$ it can be easily seen that $a_{h+1,h}^{(2h-2)} = 1$ and $a_{h+1,h}^{(h-2)} = 0$. Consequently $f(A) \neq 0$, which implies that $\Phi_{M_h(2)} = m_{M_h(2)}$ and $M_h(2)$ is nonderogatory.

We next show that if $r \ge 3$ then $M_h(r)$ is derogatory. For $i = 1, \ldots, h-1$, we denote by e_i the canonical row vector of \mathbb{C}^{h-1} and f_i the canonical column vector of \mathbb{C}^{h-1} . Labeling the vertices of $M_h(r)$ as shown in Figure 1, the adjacency matrix A of $M_h(r)$ has the form

$$A = \begin{pmatrix} 0 & e_1 & e_1 & \cdots & e_1 \\ f_{h-1} & X & 0 & \cdots & 0 \\ \vdots & \ddots & & \vdots \\ f_{h-1} & 0 & \cdots & X & 0 \\ f_{h-1} & 0 & 0 & \cdots & X \end{pmatrix}$$

☑

where $0 \in \mathcal{M}_{h-1}(\mathbb{C})$ is the zero matrix and $X = (x_{ij}) \in \mathcal{M}_{h-1}(\mathbb{C})$ is the matrix such that $x_{i,i+1} = 1$ for $i = 1, \ldots, h-2$, and the rest of the entries of X are zero. Set $Y_1 = X$, $Z_1 = 0$ and for $j = 2, \ldots, h-1$ define recursively

$$Y_j = f_{h+1-j}e_1 + Y_{j-1}X (1)$$

and

$$Z_j = f_{h+1-j} e_1 + Z_{j-1} X.$$
 (2)

We next show that for every $j = 1, \ldots, h - 1$

$$A^{j} = \begin{pmatrix} 0 & e_{j} & e_{j} & \cdots & e_{j} \\ f_{h-j} & Y_{j} & Z_{j} & \cdots & Z_{j} \\ \vdots & & \ddots & & \vdots \\ f_{h-j} & Z_{j} & \cdots & Y_{j} & Z_{j} \\ f_{h-j} & Z_{j} & Z_{j} & \cdots & Y_{j} \end{pmatrix}.$$
 (3)

In fact, this is clear for j = 1. Assume (3) holds for $1 \le i \le h - 2$. Note that

$$e_i f_{h-1} = 0$$
 and $e_i X = e_{i+1}$. (4)

On the other hand, since $Xf_j = f_{j-1}$ for every j = 2, ..., h-1 then

$$Y_i f_{h-1} = f_{h+1-i} e_1 f_{h-1} + Y_{i-1} X f_{h-1} = Y_{i-1} f_{h-2}$$

and after i - 1 steps we deduce

$$Y_i f_{h-1} = Y_{i-1} f_{h-2} = Y_{i-2} f_{h-3} = \cdots = Y_1 f_{h-i}.$$

But recall that $Y_1 = X$ and so

$$Y_i f_{h-1} = f_{h-(i+1)} \,. \tag{5}$$

Similarly,

$$Z_i f_{h-1} = Z_{i-1} f_{h-2} = \cdots = Z_1 f_{h-i}$$

but $Z_1 = 0$ implies

$$Z_i f_{h-1} = 0. (6)$$

Also we know that

$$f_{h-i}e_1 + Y_i X = f_{h+1-(i+1)}e_1 + Y_{(i+1)-1}X = Y_{i+1}$$
(7)

and

$$f_{h-i}e_1 + Z_i X = Z_{i+1} \,. \tag{8}$$

Consequently, it follows from equations (4)-(8) that

$$A^{i+1} = A^{i}A = \begin{pmatrix} 0 & e_{i+1} & e_{i+1} & \cdots & e_{i+1} \\ f_{h-(i+1)} & Y_{i+1} & Z_{i+1} & \cdots & Z_{i+1} \\ \vdots & & \ddots & & \vdots \\ f_{h-(i+1)} & Z_{i+1} & \cdots & Y_{i+1} & Z_{i+1} \\ f_{h-(i+1)} & Z_{i+1} & Z_{i+1} & \cdots & Y_{i+1} \end{pmatrix},$$

hence (3) holds for every $j = 1, \ldots, h - 1$.

Volumen 42, Número 1, Año 2008

On the other hand,

$$e_{h-1}f_{h-1} = 1, e_{h-1}X = 0,$$

$$Y_{h-1}f_{h-1} = \mathbf{0} = Z_{h-1}f_{h-1},$$

and from repeated use of (1) and the fact that $X^{h} = 0$,

$$f_{1}e_{1} + Y_{h-1}X = f_{1}e_{1} + (f_{2}e_{1} + Y_{h-2}X)X$$

$$= f_{1}e_{1} + f_{2}e_{2} + Y_{h-2}X^{2} = \cdots$$

$$= \sum_{k=1}^{h-2} f_{k}e_{k} + Y_{2}X^{h-2} = \sum_{k=1}^{h-2} f_{k}e_{k} + (f_{h-1}e_{1} + Y_{1}X)X^{h-2}$$

$$= \sum_{k=1}^{h-2} f_{k}e_{k} + f_{h-1}e_{1}X^{h-2} + X^{h} = \sum_{k=1}^{h-1} f_{k}e_{k} = I.$$

Similarly, using (2) it can be shown that $f_1e_1 + Z_{h-1}X = I$. It follows from these relations and (3) that

$$A^{h} = A^{h-1}A = \begin{pmatrix} r & 0 & \cdots & 0 \\ 0 & I & \cdots & I \\ \vdots & \vdots & & \vdots \\ 0 & I & \cdots & I \end{pmatrix},$$
(9)

where the 0's in the first row are the zero vectors in \mathbb{C}^{h-1} , the 0's in the first column are the zero column vectors of \mathbb{C}^{h-1} and $I \in \mathcal{M}_{h-1}(\mathbb{C})$ is the identity.

Relation (9) implies that for every integer $k \geq 2$

$$A^{kh} = \begin{pmatrix} r^{k} & 0 & \cdots & 0\\ 0 & r^{k-1}I & \cdots & r^{k-1}I\\ \vdots & \vdots & & \vdots\\ 0 & r^{k-1}I & \cdots & r^{k-1}I \end{pmatrix} = rA^{(k-1)h}.$$
 (10)

Now consider the polynomial $g \in \mathbb{C}[x]$ defined as

$$g(x) = x^{rh-r-h} \left(x^h - r \right) ,$$

we will show that g(A) = 0. To see this, note that since $r \ge 3$ and $h \ge 3$, by the division algorithm, we can find integers $q \ge 2$ and $0 \le s \le h - 1$ such that

$$rh - r = qh + s.$$

From relation (10) we deduce that

$$A^{rh-r} = A^{qh+s} = rA^{(q-1)h+s} = rA^{qh+s-h} = rA^{rh-r-h}$$

which implies g(A) = 0 and so $M_h(r)$ is derogatory.

Q

JUAN RADA

References

- CVETKOVIĆ, D., DOOB, M., AND SACHS, H. Spectra of graphs. Academic Press, New York, 1980.
- [2] GAN, C. Some results on annihilatingly unique digraphs. M.Sc. Thesis, University of Malaya, 1995. Kuala Lumpur, Malaysia.
- [3] GAN, C., AND KOO, V. On annihilating uniqueness of directed windmills. In Proceedings of the ATCM (2002), ATCM. Melaka, Malaysia.
- [4] LAM, K. On digraphs with unique annihilating polynomial. Ph.D. Thesis, University of Malaya, 1990. Kuala Lumpur, Malaysia.
- [5] LAM, K., AND LIM, C. The characteristic polynomial of ladder digraph and an annihilating uniqueness theorem. Discrete Mathematics 151 (1996), 161-167.

(Recibido en octubre de 2007. Aceptado en febrero de 2008)

DEPARTAMENTO DE MATEMÁTICAS UNIVERSIDAD DE LOS ANDES 5101 MÉRIDA, VENEZUELA *e-mail:* juanrada@ula.ve