Nonderogatory directed windmills

Molinos de viento dirigidos no derogatorios

JUAN RADA^a

Universidad de Los Andes, Mérida, Venezuela

ABSTRACT. A directed graph G is nonderogatory if its adjacency matrix A is nonderogatory, i.e., the characteristic polynomial of *A* is equal to the minimal polynomial of *A*. Given integers $r \geq 2$ and $h \geq 3$, a directed windmill $M_h(r)$ is a directed graph obtained by coalescing r dicycles of length h in one vertex. In this article we solve a conjecture proposed by Gan and Koo $([3])$: $M_h(r)$ is nonderogatory if and only if *r =* 2.

Key words and phrases. Nonderogatory matrix, characteristic polynomial of directed graphs, directed windmills.

2000 Mathematics Subject Classification. 05C50.

R e su m e n . Un grafo dirigido *G* es no-derogatorio si su matriz de adyacencia *A* es no-derogatoria, es decir el polinomio característico de *A* es igual al polinomio minimal de *A*. Dados enteros $r \geq 2$ y $h \geq 3$, el molino de viento dirigido $M_h(r)$ es un grafo dirigido que se obtiene por medio de la coalescencia de *r* diciclos de longitud *h* en un vértice. En este artículo resolvemos una conjetura propuesta por Gan y Koo $([3])$: $M_h(r)$ es no-derogatorio si, y sólo si, $r = 2$.

Palabras y frases clave, matriz no-derogatoria, polinomio característico de grafos dirigidos, molinos de viento dirigidos.

1. Introduction

A digraph (directed graph) $G = (V, E)$ is defined to be a finite set V and a set E of ordered pairs of elements of V . The sets V and E are called the set of vertices and arcs, respectively. If $(u, v) \in E$ then *u* and *v* are adjacent and *(u, v)* is an arc starting at vertex *u* and terminating at vertex *v.*

Let $\mathcal{M}_n(\mathbb{C})$ denote the space of square matrices of order *n* with entries in C. Suppose that $\{u_1, \ldots, u_n\}$ is the set of vertices of *G*. The adjacency matrix of *G* is the matrix $A \in \mathcal{M}_n(\mathbb{C})$ whose entry a_{ij} is the number of arcs starting

aFinancial support was received from CDCHT-ULA, Project No. C-13490505B.

62 JUAN RADA

at u_i and terminating at u_j . The characteristic polynomial of G is denoted by $\Phi_G(x)$ (or simply Φ_G) and it is defined as the characteristic polynomial of the adjacency matrix *A* of *G*, i.e., $\Phi_G(x) = |xI - A|$, where *I* is the identity matrix.

The monic polynomial of least degree which annihilates *A* is called the minimal polynomial of *G* and is denoted by $m_G(x) = m_G$; it divides every polynomial $f \in \mathbb{C} [x]$ such that $f(A) = 0$. In particular, by the Cayley-Hamilton Theorem, $m_G(x)$ divides $\Phi_G(x)$. Moreover, $\Phi_G(x)$ and $m_G(x)$ have the same roots.

A digraph *G* is nonderogatory if its adjacency matrix *A* is nonderogatory, i.e., if $\Phi_G(x) = m_G(x)$; otherwise, *G* is derogatory. For example, dipaths P_n , dicycles C_n , difans F_n and diwheels W_n are classes of nonderogatory digraphs. These classes of digraphs have been studied by Gan, Lam and Lim ([2],[4] and [5]). More recently ([3]), Gan and Koo considered the problem of determining when the directed windmills are nonderogatory.

Let *h*, *r* be integers such that $h \geq 3$ and $r \geq 2$. A directed windmill $M_h(r)$ is the directed graph with $r(h - 1) + 1$ vertices obtained from the coalescence of *r* dicycles of length *h* in one vertex (see Figure 1).

FIGURE 1. The directed windmill $M_h(r)$: *r* copies of the dicycle C_h .

Gan and Koo showed that $M_3(r)$ is nonderogatory if and only if $r = 2$. Moreover, they conjectured that for every $h \geq 3$

 $M_h(r)$ is nonderogatory $\Leftrightarrow r = 2$.

In this paper we show that this conjecture is true.

Volumen 42, Número 1, Año 2008

2**. N onderogatory directed windmills**

Recall that a linear directed graph is a digraph in which each indegree and each outdegree is equal to 1 (i.e. it consists of cycles). The coefficient theorem for digraphs $([1,$ Theorem 1.2) relates the coefficients of the characteristic polynomial with the structure of the digraph.

Theorem 2.1. *Let*

$$
\Phi_G(x) = x^n + a_1 x^{n-1} + \dots + a_{n-1} x + a_n
$$

be the characteristic polynomial of the digraph G. Then for each $i = 1, \ldots, n$

$$
a_i = \sum_{L \in \mathcal{L}_i} (-1)^{p(L)},
$$

where \mathcal{L}_i *is the set of all linear directed subgraphs L of G with exactly i vertices; p (L) denotes the number of components of L.*

Lemma 2.2. *The characteristic polynomial of* $M_h(r)$ *is*

$$
\Phi_{M_h(r)} = x^{r(h-1)+1} - rx^{r(h-1)+1-h} = x^{r(h-1)+1-h} \left[x^h - r \right].
$$

Proof. This is an immediate consequence of Theorem 2.1. \Box

Let *G* be a directed graph and $A = (a_{ij})$ its adjacency matrix. By a walk of length *k* in *G* we mean a sequence of vertices $v_0v_1 \cdots v_k$ in which each (v_{i-1}, v_i) is an arc of *G.* It is well known that the number of walks of length *k* between two vertices v_i and v_j of *G* is $a_{ij}^{(k)}$, the entry *ij* of the power matrix A^k ([1, Theorem 1.9]).

Theorem 2.3. $M_h(r)$ *is nonderogatory if and only if* $r = 2$.

Proof. The characteristic polynomial of $M_h(2)$ is

$$
\Phi_{M_h(2)}=x^{h-1}\left(x^h-2\right).
$$

Let $f(x) = x^{h-2} (x^h - 2)$ and $A = (a_{ij})$ the adjacency matrix of $M_h (2)$. From the structure of M_h (2) it can be easily seen that $a^{(2h-2)}_{h+1,h} = 1$ and $a^{(h-2)}_{h+1,h} = 0$. Consequently $f(A) \neq 0$, which implies that $\Phi_{M_h(2)} = m_{M_h(2)}$ and $M_h(2)$ is nonderogatory.

We next show that if $r \geq 3$ then $M_h(r)$ is derogatory. For $i = 1, \ldots, h-1$, we denote by e_i the canonical row vector of \mathbb{C}^{h-1} and f_i the canonical column vector of \mathbb{C}^{h-1} . Labeling the vertices of $M_h(r)$ as shown in Figure 1, the adjacency matrix A of $M_h(r)$ has the form

$$
A = \begin{pmatrix} 0 & e_1 & e_1 & \cdots & e_1 \\ f_{h-1} & X & \mathbf{0} & \cdots & \mathbf{0} \\ \vdots & & \ddots & & \vdots \\ f_{h-1} & \mathbf{0} & \cdots & X & \mathbf{0} \\ f_{h-1} & \mathbf{0} & \mathbf{0} & \cdots & X \end{pmatrix}
$$

where $0 \in \mathcal{M}_{h-1}(\mathbb{C})$ is the zero matrix and $X = (x_{ij}) \in \mathcal{M}_{h-1}(\mathbb{C})$ is the matrix such that $x_{i,i+1} = 1$ for $i = 1, ..., h-2$, and the rest of the entries of *X* are zero. Set $Y_1 = X$, $Z_1 = 0$ and for $j = 2, ..., h-1$ define recursively

$$
Y_j = f_{h+1-j}e_1 + Y_{j-1}X \tag{1}
$$

and

$$
Z_j = f_{h+1-j} e_1 + Z_{j-1} X. \tag{2}
$$

We next show that for every $j = 1, \ldots, h-1$

$$
A^{j} = \begin{pmatrix} 0 & e_{j} & e_{j} & \cdots & e_{j} \\ f_{h-j} & Y_{j} & Z_{j} & \cdots & Z_{j} \\ \vdots & & \ddots & & \vdots \\ f_{h-j} & Z_{j} & \cdots & Y_{j} & Z_{j} \\ f_{h-j} & Z_{j} & Z_{j} & \cdots & Y_{j} \end{pmatrix} .
$$
 (3)

In fact, this is clear for $j = 1$. Assume (3) holds for $1 \le i \le h - 2$. Note that

$$
e_i f_{h-1} = 0 \text{ and } e_i X = e_{i+1} . \tag{4}
$$

On the other hand, since $Xf_j = f_{j-1}$ for every $j = 2, ..., h-1$ then

$$
Y_i f_{h-1} = f_{h+1-i} e_1 f_{h-1} + Y_{i-1} X f_{h-1} = Y_{i-1} f_{h-2}
$$

and after *i* — 1 steps we deduce

$$
Y_i f_{h-1} = Y_{i-1} f_{h-2} = Y_{i-2} f_{h-3} = \cdots = Y_1 f_{h-i}.
$$

But recall that $Y_1 = X$ and so

$$
Y_i f_{h-1} = f_{h-(i+1)} \,. \tag{5}
$$

Similarly,

$$
Z_i f_{h-1} = Z_{i-1} f_{h-2} = \cdots = Z_1 f_{h-i},
$$

but $Z_1 = 0$ implies

$$
Z_i f_{h-1} = 0. \tag{6}
$$

Also we know that

$$
f_{h-i}e_1 + Y_i X = f_{h+1-(i+1)}e_1 + Y_{(i+1)-1}X = Y_{i+1}
$$
 (7)

and

$$
f_{h-i}e_1 + Z_i X = Z_{i+1}.
$$
 (8)

Consequently, it follows from equations (4)-(8) that

$$
A^{i+1} = A^i A = \begin{pmatrix} 0 & e_{i+1} & e_{i+1} & \cdots & e_{i+1} \\ f_{h-(i+1)} & Y_{i+1} & Z_{i+1} & \cdots & Z_{i+1} \\ \vdots & \vdots & \ddots & \vdots \\ f_{h-(i+1)} & Z_{i+1} & \cdots & Y_{i+1} & Z_{i+1} \\ f_{h-(i+1)} & Z_{i+1} & Z_{i+1} & \cdots & Y_{i+1} \end{pmatrix},
$$

hence (3) holds for every $j = 1, \ldots, h - 1$.

Volumen 42, Número 1, Año 2008

On the other hand,

$$
e_{h-1}f_{h-1}=1, e_{h-1}X=0,
$$

$$
Y_{h-1}f_{h-1}=0=Z_{h-1}f_{h-1},
$$

and from repeated use of (1) and the fact that $X^h = 0$,

$$
f_1e_1 + Y_{h-1}X = f_1e_1 + (f_2e_1 + Y_{h-2}X)X
$$

= $f_1e_1 + f_2e_2 + Y_{h-2}X^2 = \cdots$
=
$$
\sum_{k=1}^{h-2} f_ke_k + Y_2X^{h-2} = \sum_{k=1}^{h-2} f_ke_k + (f_{h-1}e_1 + Y_1X)X^{h-2}
$$

=
$$
\sum_{k=1}^{h-2} f_ke_k + f_{h-1}e_1X^{h-2} + X^h = \sum_{k=1}^{h-1} f_ke_k = I.
$$

Similarly, using (2) it can be shown that $f_1 e_1 + Z_{h-1} X = I$. It follows from these relations and (3) that

$$
A^{h} = A^{h-1}A = \begin{pmatrix} r & 0 & \cdots & 0 \\ 0 & I & \cdots & I \\ \vdots & \vdots & & \vdots \\ 0 & I & \cdots & I \end{pmatrix}, \qquad (9)
$$

where the $0's$ in the first row are the zero vectors in \mathbb{C}^{h-1} , the $0's$ in the first column are the zero column vectors of \mathbb{C}^{h-1} and $I \in \mathcal{M}_{h-1}(\mathbb{C})$ is the identity.

Relation (9) implies that for every integer $k \geq 2$

$$
A^{kh} = \begin{pmatrix} r^k & 0 & \cdots & 0 \\ 0 & r^{k-1}I & \cdots & r^{k-1}I \\ \vdots & \vdots & & \vdots \\ 0 & r^{k-1}I & \cdots & r^{k-1}I \end{pmatrix} = rA^{(k-1)h}.
$$
 (10)

Now consider the polynomial $g \in \mathbb{C}[x]$ defined as

$$
g\left(x\right) = x^{rh-r-h}\left(x^{h}-r\right) ,
$$

we will show that $g(A) = 0$. To see this, note that since $r \geq 3$ and $h \geq 3$, by the division algorithm, we can find integers $q \ge 2$ and $0 \le s \le h-1$ such that

$$
r h - r = q h + s \, .
$$

From relation (10) we deduce that

$$
A^{rh-r} = A^{qh+s} = rA^{(q-1)h+s} = rA^{qh+s-h} = rA^{rh-r-h}
$$

which implies $g(A) = 0$ and so $M_h(r)$ is derogatory.

66 JUAN RADA

References

- **[1] C v e t k o v ic , D., D o o b , M., a n d S a c h s, H.** *Spectra of graphs.* **Academic Press, New York, 1980.**
- **[2] G a n , C . Some results on annihilatingly unique digraphs. M.Sc. Thesis, Univesity of Malaya, 1995. Kuala Lumpur, Malaysia.**
- **[3] G a n , C., a n d K o o , V. On annihilating uniqueness of directed windmills. In** *Proceedings of the ATCM* **(2002), ATCM. Melaka, Malaysia.**
- **[4] L a m , K.** *On digraphs with unique annihilating polynomial* **Ph.D. Thesis, University of Malaya, 1990. Kuala Lumpur, Malaysia.**
- [5] LAM, K., AND LIM, C. The characteristic polynomial of ladder digraph and an annihilating uniqueness theorem. *Discrete Mathematics 151* (1996), 161-167.

(Recibido en octubre de 2007. Aceptado en febrero de 2008)

DEPARTAMENTO DE MATEMÁTICAS UNIVERSIDAD DE LOS ANDES 5 1 0 1 M é r i d a , V e n e z u e l a *e-mail:* juanrada@ula.ve