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R e su m e n . Obtenemos una demonstración directa y  simple del segundo teo
rema de isomorfismo de Noether para categorías abelianas.

Palabras y  frases clave. Categorías abelianas, teorema del isomorfismo de 
Noether.

N o eth er ’s first isom orphism  theorem  for m od u les [6 ] asserts th a t, if  R  is a  
u n itary  ring, A  is a u n itary  left i? -m odu le and A \ , A 2 are tw o subm odules o f A  
such  th a t A \  C A 2, then  th e  qu otien t i? -m odu les (A j A i ) / ( A / A 2) and A 2/ A \  
are isom orphic; proofs o f its  ex ten sion  to  arbitrary abelian  categories m ay b e  
found in [1], [2] and [4].

N o eth er ’s second  isom orphism  theorem  for m odu les [6 ] asserts th a t if  R  is a  
un itary  ring, A  is a  u n itary  left i? -m od u le and A \ , A 2 are tw o su bm odules o f  A ,  
th en  th e  q u otien t ^ -m o d u les  A 2/ { A i  f l A 2) and (A± +  A 2) j A \  are isom orphic;
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proofs of its extension to arbitrary abelian categories may be found in [1], [2] 
and [4]. In this note we present a proof of Noether’s second isomorphism theo
rem for abelian categories, which only presupposes the rudiments on abelian 
categories and is inspired by that of the classical case.

For the sake of clarity let us begin with some basic notions and facts con
cerning categories, to be found in [1], [2], [3], [4] and [7], which will be needed 
in the sequel.

Let C be a category and Ob(C) the class of objects of C. For A ,B  G Ob(C),
1a shall denote the identity morphism of A  and More (A,B) the set of mor- 
pliisms from A to B. Let u G More {A, B), u is injective (resp. surjective) if 
the relations C  G Ob(C), v \ , v 2 G Morc(C, 4̂) (resp. w i,w 2 G Morc(£?,C)), 
uvi =  uv2 (resp. w\u  =  w2u) imply v\ — v2 (resp. w\ =  w2)\ u is bijective 
if u is injective and surjective; u is an isomorphism if there exists (necessarily 
unique) v! G Movc{B,A) such that u'u =  1a and uu' =  1 b\ A and B  are 
isomorphic if there exists an isomorphism u : A —> B. Every isomorphism is 
bijective, but the converse is not true in general; see Example 3b below.

Let A G Ob(C) be fixed. If u\ G Morc(^4i,A) and u2 G Morc(y42,̂ 4) are 
injective, we write (Ai,wi) < (A2,u2) (or A\ < A 2) to indicate the existence 
of a v G Morc(^4i, A2) such that u\ =  u2v ; < is a partial order in the class 
of all such pairs (^4i,«i). (yli,ui) and (^2?^2) as above are equivalent if 
(Ai,wi) < (A2,u 2) and (A2 ,u2) < (^4i,wi); in this case, A\ and A2 are iso
morphic. In each class of equivalent pairs we choose a pair, called a subobject 
of A. The class of subobjects of A is an ordered class under the relation <. 
Dually, we consider a partial order < in the class of all pairs (P ,w ), where 
w G More (./I, P) is surjective, and we choose a pair in each class of equivalent 
pairs, called a quotient of A. The class of quotients of A  is an ordered class 
under the relation <.

A category C is additive if:

(a) for all A , B e Ob(C), the product A x  B  and the direct sum A ®  B  exist;

(b) for all A ,B  G Ob(C), Morc(A ,B )  is an abelian group, whose identity 
element shall be denoted by 0ab\

(c) for all A ,B ,C  G Ob(C), the com position o f m orphism s

(•u,v) G Morc(^4, B) x  M orc(B ,C ) —» vu G Morc(^4, C) 

is a  Z -b ilin ear m apping;

(d) there exists A  G 06(C) such that 1 a =  0aa- 

Obviously, every A', A" as in (d) are isomorphic.
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If C is a category satisfying conditions (b) and (c) above, then, for all 
A, B  G 06(C), the assumptionsuA x B  exists” and UA@B  exists” are equivalent.

If C is an additive category and u G More (A  B), to say that u is injective 
(resp. surjective) is equivalent to saying that the relations C  G 06(C), v G 
Morc(C, 4̂) (resp. w G Morc(-B,C)), uv =  0c b  (resp. wu =  0a c )  imply 
v -  0c a  (resp. w =  0BC).

Let C be an additive category and u G More (A  B). A pair (I, i) (where
i G Morc(/, 4̂)) is a generalized kernel of u if the following conditions hold:

(a) i is injective;

(b) ui =  0IB ;

(c) for each C  G Ob(C) and for each v G Morc{C,A) with uv =  0cb, there 
exists w G Morc(C, I) so that iw =  v.

Two generalized kernels of u are equivalent. Therefore among them (if they 
do exist) there is exactly one, denoted by (Ker(u), i) and called the kernel of u , 
which is a subobject of A (the morphism i : Ker(u) —> -A is called the canonical 
injection).

Dually, a pair (J, j )  (where j  G Morc(.B, J)) is a generalized cokernel of u 
if the following conditions hold:

(a) j  is surjective;

(b) ju  =  0AJ;

(c) for each C  G 06(C) and for each w G Morc(^,C) with wu =  0ac ,  there 
exists v G Morc(J, C) so that w =  vj.

Two generalized cokernels of u are equivalent. Therefore among them (if 
they do exist) there is exactly one, denoted by (Coker(u),j)  and called the 
cokernel of u, which is a quotient of B  (the morphism j  : B  —> Coker(u) is 
called the canonical surjection). If Coker(u) exists, we define the image of u 
as Im(u) =  Ker(Coker(u)), if Ker(Coker(u)) exists. And, if Ker(u) exists, we 
define the coimage of u as Coim(u) =  Coker(Ker(u)), if Coker(Ker(u)) exists.

Proposition 1 . Let C be an additive category and let u G Morc{A, B) be such 
that Coim(u) and Im(u) exist. Then there exists an unique

u G Morc(Coim(u), Im(u))

such that u =  iuj, where i : Im(u) —+ B is the canonical injection and j  : A —> 
Coim(u) is the canonical surjection.

A category C is abelian if it is additive and the following conditions hold:
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(AB1) for all u € Morc(^4,5), Ker(w) and Coker(u) exist;

(AB2) for all u € Morc(^4, B), the above morphism u is an isomorphism.

If C is an additive category satisfying (AB1), then C is an abelian category 
if, and only if, the conditions (o;) and (/3) below hold:

(a) for all u € Motc{A, B), u is bijective;

((3) every bijection is an isomorphism.

Exam ple 2. (a) Let R be a unitary ring. Then Modn, the category whose 
objects are unitary left R-modules and whose morphisms are R-linear 
mappings, is abelian. In particular, the category of abelian groups is 
abelian. .

(b) If p is a positive prime number, the category of finite abelian p-groups is 
abelian.

(c) The category of vector bundles [8]  is abelian.

(d) The category of sheaves of abelian groups on a topological space [5J is 
abelian.

Exam ple 3. (a) The category of free abelian groups is additive, but is not 
abelian; see [6, p. 1 10 J.

(b) It is easily verified that Gt, the category whose objects are abelian topolo
gical groups and whose morphisms are continuous group homomorphisms, 
is additive and satisfies condition (a). But Gt is not abelian. In fact, let 
A be the additive group of real numbers endowed with the discrete topology, 
B the additive group of real numbers endowed with the usual topology and 
u : A  —> B the identity mapping. Then A , B e Ob(Gt), u £ Morct(A , B), 
u is bijective, but u is not an isomorphism. Hence condition ((3) is not 
satisfied and Gt is not abelian.

Proposition 4. LetC be an abelian category, A ,B ,C  € Ob(C), u € Morc(A, B) 
and v € Morc(B, C). Then the following assertions hold:

(a) u is surjective if, and only if, Im(u) =  B (that is, the canonical injection 
Im(u) —> B is an isomorphism);

(b) Ker(vu) > Ker(u);

(c) vu =  Oac if  and only if, Im(u) < Ker(v);

(d) If (A ,u ) is a subobject of B, then A  =  Im(u), that is, the morphism 
A —> Goim(u) Im(u) is an isomorphism.
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Proposition 5. Let C be an abelian category and A € Ob(C). Let S be the 
class of subobjects of A and Q the class of quotients of A. For (A ',i) e S and 
(A " ,j) S Q, the relations Coker(i) =  A" and Ker(j) = A' are equivalent and 
establish a one-to-one correspondence between S and Q.

For each A! e S, A/A' shall denote the corresponding element of Q.
If C is an abelian category and A 6 Ob(C), it is well-known that the ordered 

class of subobjects of A is a lattice. If A \ ,A 2 are two subobjects of A, we put 
A\ fl A2 := m f(A i,A 2) and A\ U A2 := sup(^4i, A2). The next proposition is 
Theorem 2.13 of [2]. We recall its proof (here in a slightly modified version) 
since it will be used later on.

Proposition 6. Let C be an abelian category and A € Ob(C). Then any two 
subobjects of A admit an infimum.

Proof. Let (yli, ¿1) and (A 2, i2) be two subobjects of A and let j \  : A —► A /A \  
be the canonical surjection. Put u =  j \ i 2 and let (Ker(u), i) be the kernel of u. 
Then (Ker(u),Z2i) is a subobject of A such that Ker(u) < A2. We claim that 
Ker(u) < A\. Indeed, since

^K.ev{u)A/A\ ^  (j'1 2̂)̂  Jl(^20 )
and since Ker(ji) =  A\ by Proposition 5, there exists a morphism w : Ker(u) —» 
A\ such that the diagram

is commutative. Thus Ker(u) < Ai.
Now, let (X ,k)  be a subobject of A such that X  < A\ and X  < A2. 

We claim that X  <  Ker(u). Indeed, since X  < A\, there exists a morphism 
61 : X  —> A\ such that the diagram

is commutative. And, since X  < A2, there exists a morphism 02 : X  —► A 2 
such that the diagram

Ker(u) ——> A2

W

Ai A

k A

Ai

k A

A2
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is commutative. On the other hand,

u02 =  ( j l i2)02 =  J l( i2 2̂) =  j l (h 9 l)  =  ( j lh )d l =  ^AtA/A^l =  OxA/Ai ■ 

Hence there exists a morphism t : X  —> Ker(w) such that the diagram

X ---- ->■ Ker(w)

02
' t 

^2

is commutative. Consequently,

k — i202 =  i2{it) =  (i2i ) t ,

proving that X  <  Ker(u). Therefore the subobjects (A \ , i \ )  and (A2, i 2) of A 
admit an infimum, namely, (Ker(w), i2i). This completes the proof. Ei

Now, let us state Noether’s second isomorphism theorem for abelian cate
gories [2, p. 59, 2.67]:

Theorem 7. Let C be an abelian category and A E Ob(C). If A i ,A 2 are two 
subobjects of A, then A 2/ {A \  O A2) and (A\ \JA2) /A \ are isomorphic.

In order to prove Theorem 7 we shall need two auxiliary lemmas.

Lemma 8. Let C be an abelian category. If u E Morc(A, B) is such that 
Kerin) =  A, that is, if the canonical injection i : Ker(u) —> A is an isomor
phism, then u =  Oa b -

Proof. Let i' G More (A, Ker(u)) be such that ii' — 1^ and i'i =  li<er(u)- Since 
ui =  Oj<er(u)B, we obtain

U =  u lA =  U {ii') - (ui)if =  OKeriu) *̂' =  0AB ■

Ei

Lemma 9. Let C be an abelian category and A G Ob(C). If A \ ,A 2 are two 
subobjects of A, consider the sequence

A2 —> Ai U A 2 —> (Aj U A2)/ A \ ,

where k is the canonical injection and I is the canonical surjection. Then v — Ik 
is surjective.
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Proof. Let C  G Ob(C) and w G More ((Ai UA2) /A \ , C) be such that wv — 0a2c- 
We have to show that w =  ^{Ai\ja2)/axc- But, since I is surjective, it suffices 
to show that wl =  0(^iUj42)c- S o, let us prove that wl =  0(/4lÛ 2)c- Indeed, 
the relation

(wl)k =  w(lk) =  wv — 0a2c

and Proposition 4(c) furnish Im(fc) < Ker(w/). Thus, by Proposition 4(d), 
A2 <  Ker(wl). On the other hand, Ker(wl) > Ker(Z) =  A\, in view of Proposi
tions 4(b) and 5. Consequently, A\ U A2 < Ker(iu/). Since Ker(wl) < A\ U A2, 
we get Ker(u;/) =  A\ U A2, and therefore wl — 0(Aiua2)C by Lemma 8. This 
completes the proof. Gtf

Now, let us turn to the proof of Theorem 7:

Proof Clearly we may suppose that A =  A\ U A2. Let v be as in the proof of 
Lemma 9. By the proof of Proposition 6, Ker(u) =  A\ fl A2, and hence

Coim(u) =  Coker(Ker(?;)) =  Coker(Ai f l  A2) =  A2J(A\ f l A2) .

Since C is abelian,
v : A2/(A \  fl A2) —> Im(t;)

is an isomorphism. Moreover, Im(v) =  (Ai U A2)/A \,  in view of Lemma 9 and 
Proposition 4(a). Then A2/ (A \  fl A2) and (Ai U A2)/A \  are isomorphic, as was 
to be shown. 2Î

Corolary 10. Let R be a unitary ring, A G Ob(Modii) and A\, A2 two sub- 
modules of A. Then the quotient R-modules A2/(A \  fl A2) and (A\ +  A2)/A\  
are isomorphic.

Proof. The result follows immediately from Theorem 7, because A\ +  A2 =  
A\ U A2. Ei

Acknowledgment: The authors are grateful to the referee for his valuable 
report.
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