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A b s t r a c t .  In this paper, we consider a semilinear heat equation with a poten­
tial subject to Neumann boundary conditions and positive initial data. Under 
some assumptions, we show that the solution of the above problem quenches 
in a finite time and estimate its quenching time. We also prove the continu­
ity of the quenching time as a function of the potential and the initial data. 
Finally, we give some numerical results to illustrate our analysis.
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R e s u m e n .  En este trabajo consideramos una ecuación semilineal de calor 
con potencial, sujeta a condiciones de Neumann de frontera y  datos iniciales 
positivos. B ajo  ciertos supuestos mostramos que la solución de dicha ecuación 
se apaga en tiempo finito y  estimamos el tiempo en que lo hace. También 
probamos la continuidad del tiempo de extinción en función del potencial y  
de los datos iniciales. Finalmente damos algunos resultados numéricos que 
ilustran nuestro análisis.

Palabras y frases clave. Apagamiento, ecuación de calor semilineal, tiempo de 
apagamiento numérico.
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56 THÉODORE K. BONI & THIBAUT K. KOUAKOU

1. Introduction

Let Cl be a bounded domain in R^ with smooth boundary dfi. Consider the 
following initial-boundary value problem

ut =  Lu — a(x)f(u) in n  x (0, T ) , (1)
du
—  =  0 on dfi. x (0,T ) , (2)
UTj

w(x,0) =  uo(x) >  0 in Q , (3)

where /  : (0, oo) — * (0, oo) is a C 1 convex, nonincreasing function, /Q7 y <
oo for any positive real 7 , lims_>0+ f i s ) =  00, a 6 C° (fi), a(x) >  0 in fi. The 
operators L and 4- are defined as follows

where v =  (v i , . . . ,  v^) is the exterior normal unit vector on dQ, aij : Q — > R, 
ciij G C 1 (i2), ciij =  ciji, 1 < z, j  < N, and there exists a positive constant C 
such that

N -

i,j=l

where || • || stands for the Euclidean norm of R^. The initial data u0 G C 1 (ii), 
uo(x) > 0 in Q and satisfies the compatibility condition =  0 on dfl. Here 
(0,T) is the maximal time interval of existence of the solution ti. The time T  
may be finite or infinite. When T  is infinite, then we say that the solution u 
exists globally. When T  is finite, then the solution u develops a singularity in 
a finite time, namely,

lim Mmin(£) =  0 ,
t—>T

where umm(t) =  minxe^u(x ,t) .  In this last case, we say that the solution u 
quenches in a finite time, and the time T  is called the quenching time of the 
solution u. Consequently, in this paper, with the definition of the time T , we 
have

n(x, t) > 0 in f i x  [0, T ).

Solutions of semilinear heat equations which quench in a finite time have 
been the subject of investigation of many authors (see [1], [2], [3], [5], [7], [8],
[9], [10], [11], [17], [19], [20], [21], [22], [23], [25], [26], and the references cited 
therein). In particular, in [5], the problem (l)-(3) has been studied. The local 
in time existence of a classical solution has been proved and this solution is
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CONTINUITY OF THE QUENCHING TIME 57

unique (see [5]). It is also shown that the solution of (l)-(3) quenches in a 
finite time, and its quenching time lias been estimated (see [5]). In this paper, 
we are interested in the continuity of the quenching time as a function of the 
potential a and the initial data no- More precisely, we consider the following 
initial-boundary value problem

vt = L v -  ah(x)f(v)  in ft x (0,T*) , (4)

2- =  o on an x (o,r‘ ), (5) 

v(x, 0) =  Uq(x ) > 0 in i2, (0)

where £ C° (0), 0 < a/t(x) < a(x) in il, lim/t_>o«/i = a- The initial data 
Uq e  C 1 (f2), Uq(x ) > uo(x) in SI, tig obeys the compatibility condition =  0 
on 0Q, limfc_o Uq =  Uq. Here (0,T k) is the maximal time interval on which the 
solution v of (4)-(6) exists. When Tji is finite, then we say that the solution 
v of (4)-(6) quenches in a finite time, and the time X£ is called the quenching 
time of the solution v. The definition of the time renders

v{x,t)  > 0 in f ix  [0,7)*).

By a little transformation, it is not hard to see

Vt — Lv +  a(x)f{v) >  0 in f ix  (0,T^ ) , 

vq{x) ^ uo{x) in .

From the maximum principle, we have v  >  u  j i s  long as all of them are defined. 
We deduce that Tfc > T. In the present paper, under some hypotheses, we prove 
that if h and k are small enough, then the solution v of (4)-(G) quenches in a 
finite time, and its quenching time Tfc goes to T  as h and k go to zero, where 
T  is the quenching time of the solution u  of (l)-(3) . Similar results have been 
obtained in [4], [8], [13J, [14J, [15j, [16j, [18], [24], [27], where the authors have 
considered both the phenomenon of blow-up and the continuity of the blow-up 
time as a function of the initial data (we say that a solution blows up in a 
finite time if it reaches the value infinity in a finite time). Recently, in [7], Boni 
and N’gohisse have handled the continuity of the quenching time as a function 
of the initial data for the problem (l)-(3) in the case where the operator L is 
replaced by the Laplacian, a(x) =  1 and f(s)  =  s~p with p a positive constant. 
The rest of the paper is organized as follows. In the next section, under some 
assumptions, we show that the solution v of (4)-(6) quenches in a finite time 
and estimate its quenching time. In the third section, we prove the continuity 
of the quenching time and finally in the last section, we give some numerical 
results to illustrate our analysis.
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58 THÉODORE K. BONI & THIBAUT K. KOUAKOU

2. Quenching time

In this section, under some assumptions, we show that the solution v of (4)-(6) 
quenches in a finite time and estimate its quenching time.
We borrow an idea of Friedman and McLeod in [12], and prove the following 
result.

Theorem 2 .1. Suppose that there exists a constant A € (0,1] such that the 
initial data at (6)  satisfies

where ukmin =  minx€n uo(*)-

Proof. Since (0, T^) is the maximal time interval of existence of the solution v, 
our aim is to show that is finite and satisfies the above inequality. Introduce 
the function J (x , t) defined as follows

Jt — L J  =  (vt -  Lv)t +  A f'(v)v t -  A Lf(v)  in f i x  (0, T%) . (8)

This implies that L f(v ) > f'(v)Lv  in fi x (0,T£) , because the first term on 
the right hand side of the above equality is nonnegative. Using this estimate 
and (8), we arrive at

L u q ( x )  -  ah{x )f  < ~ A f  ( u q ( x ) )  in i l .  (7)

Then, the solution v of (4)-(6) quenches in a finite time Tfc which obeys the 
following estimate

(x,t) =  v t (x,t) +  A f(v (x ,t) )  in fi x [0,T¿').

A straightforward computation reveals that

Again, by a direct calculation, it is easy to check that

Jt — LJ <  (vt — Lv)t +  Af'(v)(v t — Lv) in fi x (0,T£) . (9)

According to (4) and (9), it is not hard to see that

J t~  L J < - a h(x ) f { v ) v t -  Aah(x)f(v)f'(v)  in fi x (0,T f ) .

Taking into account the expression of J , we find that

Jt — LJ < —afl(x)f'(v)J  in fi x (0,T¿‘) .
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tr(8)1+̂ (,')§ =0on
and due to (7), we discover that

J(x,0) =  Luq{x) -  ah(x)f  (moX®)) + A f  (wj(.x)) < 0  in Q,.

It follows from the maximum principle that

J(x,t)  < 0 in n  x (o,t£) ,

which implies that

vt (x,t) +  A f(v (x ,t))  < 0 in ii x (0,T ’̂) .

This estimate may be rewritten in the following manner

< - A d t  in f ix  (Q,Tj;). (10)

Integrate the above inequality over (0,7}*) to obtain

CONTINUITY OF THE QUENCHING TIME 59

We also have

1 f v<*’0> ds f
t^ a J0 m ! m x € Q -

We deduce that

* -  a J0 m  •

Use the fact that the quantity on the right hand side of the above inequality is 
finite to complete the rest of the proof. 2i

Remark 2 .1. Let to G (0, T ^ ) . Integrating the inequality in (10) from to to 
7j', we get

1  M x ,t0)

n - h - A l  W ) f ° r X 6 Q ■

We deduce that

i r V mUt o)  d sT t
1 f vm' 

~ t 0 - Á l /(*)
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3. Continuity of the quenching time

In this section, under some assumptions, we show that the solution v of (4)-(6) 
quenches in a finite time, and its quenching time goes to that of the solution 
u of (l)-(3) when h and k go to zero. Firstly, we show that the solution v 
approaches the solution u in f2 x [0, T  — r] with r  G (0, T ) when h and k tend 
to zero. This result is stated in the following theorem.

Theorem 3 .1 . Let u be the solution of problem (l)-(3). Suppose that u G 
C2,1 (i2 x [0, T  — r]) and minie[0)T—r] um\n(t) =  a  > 0 with r  G (0, T). Assume 
that

||ofc — o||oo =  o ( l)  a s h - >  0 , (1 1 )

IK  -  u0\L  = as k 0 ’ (12)
then, the problem (4)~(0) admits a unique solution v G C2,1 (fl x [0,T£)) and 
the following relation holds

sup |H-,£) -  w(-,<)lloo =  O (Ua/j -  a||oo +  ||wj -  w0|| ) as(h ,k)  (0,0). 
te[o,T—t]

Proof. The problem (4)-(6) lias a unique solution v G C2,1 (Q x [0,7^')), for 
each h. In the introduction of the paper, we have seen that T* > T. Let 
t(h, k) < T  be the greatest value of t >  0 such that

||v(-, t) -  «(•, O l l o o  —  ^  for i  G (0, t(h, k ) ) . ( 13 )

Obviously, we see that ||v(-,0) — w(-,0)||oo =  j|̂ o — ^oll^ • Due to this fact, 
we deduce from (12) and (13) that t(h,k) >  0 for k sufficiently small. By the 
triangle inequality, we find that

>  umin(i) -  |\v{-,t) -  w(-,i)lloo for t G {Q,t(h,k)), (14 )

which leads us to

VmiM > a -  ^ ^  for t G (0, t(h, k ) ) .

Introduce the function e(x, t) defined as follows

e(x, t) =  v(x, t) — u(x , t ) in ü x [0, £(/i, k ) ) .

A routine computation reveals that

et — Le =  —a{x)f'{6)e +  (a(x) — ah{x))f(v) in S7 x (0, t(h, k)),
Qp.
—  =  0 on dfl x (0,t(h,k)), 

e(x, 0) =  U q ( x )  —  u q { x )  in f2,
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where 6 is an intermediate value between u and v. According to (14), we find 
that f(v) <  M, where M  =  /(f)- We deduce that

et — Le < —a(x)f'(9)e +  M\\a — a/Jloo in S7 x (0, t(h, k)).

Introduce the function 2 defined as follows

z{x ,t)  =  e(L+M+1)t (||a/l -  alloc +  ||«o ~ « o ||J  in 0 x [0,r] 1

where L =  — |lalloo.r(§)- Due to (14), it is not hard to see that L =  —l|a||ooy‘/(^) 
> —a(x)f'(6) in Q x (0,t(h,k)). Thanks to this observation, a straightforward 
calculation yields

zt — Lz > —a(x)f'(6)z +  M\\a — a/JI^ in Q. x (0, t(h, k)),
Qz
—  = 0 011 dQ x (0, t(h, k)),
OT]

z(x,0) > e(x,0) in ii.

It follows from the maximum principle that

z{x, t) > e(x, t) in i) x (0, t(h, k ) ) .

In the same way, we also prove that

z(x, t) > —e(x, t) in fi x (0, t(h, k)),

which implies that

H-.OIloo <  e(i+A' +1>‘ (||afc -  a||oo +  | K  -  “ o | I J  for f € (0,t(h,k)).
Let us show that t(h ,k) =  T. Suppose that t(h ,k) <  T. From (13), we obtain

|  = |M-, t(h, k)) -  u( ;  t(fc,*))lloo < e<t+" +1>T ( | | -  a||oo + |K  "  “»ID •
Since the term on the right hand side of the above inequality goes to zero as 
h and k go to zero, we deduce that § < 0, which is impossible. Consequently, 
t(h, k) =  T, and the proof is complete.

Now, we are in a position to prove the main result of the paper.

Theorem 3.2. Suppose that problem, (l)-(3) has a solution u which quenches 
at the time T and u € C2,1 (i2 x [0, T )) . Assume that

||̂ /i a|| 00 — ®(^) h ® >
IW -  «olloo =  o{\) as k - > 0 .

Under the assumption of Theorem 2.1, the problem (4)-(6) admits a unique 
solution v which quenches in a finite time Tfc and the following relation holds

lim =  T.
(h,k)— ( 0 ,0 )

CONTINUITY OF THE QUENCHING TIME 61
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62 THÉODORE K. BONI & THIBAUT K. KOUAKOU

Proof. Let 0 < e < T/2. There exists p >  0 such that

(15)

Since u quenches in a finite time T, there exists To € (T — §,T) such that

which implies that ||v(-,Ti) — u^T^Hco < | for h and k small enough. An 
application of the triangle inequality leads us to

for h and k small enough. On the other hand, in the introduction of the present 
paper, it has been mentioned that Tfc > T, and from Theorem 2.1, we know 
that v quenches at the time Tfi. We deduce from Remark 2.1 and (15) that

4. Numerical results

In this section, we give some computational experiments to confirm the theory 
given in the previous section. We consider the radial symmetric solution of the
following initial-boundary value problem

ut =  A u — a(x)u~p in B  x (0, T ) ,

|^  =  0 on S  x (0, T ) ,

u(x, 0) =  wo( )̂ in B ,

where B  =  {a; e ||x|| < l} ,  S — {x  G RN] ||x|| =  l }  . The above problem 
may be rewritten in the following form

0 < umin(t) < |  for t € [T0,T ) .

Set T\ =  . It is-not hard to see that

um-in(t) > 0 for t e  [0, T i].

From Theorem 3.1, for h and k small enough, the problem (4)-(6) admits a 
unique solution v, and the following estimate holds

IM-, t) -  u{‘, ¿)||oo < |  for t e  [0, Ti],

^m in (7 \) <  ||v ( ’>2"i) — < , 7 \ ) | | o o  +  ^ m in(T l) <  ^ ^  — P  >

This ends the proof.
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N -I
ut =  ur r -\---------ur — a(r)u p, r € (0, 1 ), t 6 (0,T ) , (16)

r
itr(0,i) =  0, ur( l , t ) = 0 ,  t e  (0,T), (17)
u(r,0) =  p(r), r e  [0, 1 ]. (18)

Here, we take <p(r) =  2+ec°s(nr) an(j a(r ) =  l +  £-(3 +  sin(7rr)), where e £ [0,1]. 
We start by the construction of an adaptive scheme {is follows. Let I  be a 
positive integer and let h =  1/1. Define the grid Xi =  ih, 0 < i < I, and ap­

proximate the solution u of (16)-(18) by the solution u \^  =  (lIon\  ■ • •, 
of the following explicit scheme

( n + 1 )  r7’( n ) O T v ( n ) o r ; ( n )t T\11' 1 ) _  r ju0 u,’W  9 T J y '  -  o i r 1’ /  t  s \ - p  
° ~  =  N 2U ' - / U° .-a(xo) " ,

A tn
u (n+1) _  jj(n) _  2£/<") +  [ j£ \  (AT _ 1) U%\ -  U £ \

A tn ~  h2 +  ih 2 h

-  a(xi) { u \ n)y \  1 < «  < J - l ,

| - r ( n + l )  r r ( n ) O T J 9  TT^n  ̂ ✓ \ — »

u l0) =  <fi, 0 < i < I ,

where </?i =  2+ec~~— 1̂ -, a(xj) =  1 +  £(3 +  sin(i7r/i)). In order to permit the 
discrete solution to reproduce the properties of the continuous one when the 
time t approaches the quenching time T, we need to adapt the size of the time 
step so that we take

with =  mino<i<iU \n\  Let us notice that the restriction on the time
step ensures the positivity of the discrete solution. We also approximate the 
solution u of (16)-(18) by the solution U ^  of the implicit scheme below

t A ti+ I )  j j ( n )  n r r ( n + l )  _  a i y ( n + 1 ) - .  - p - 1  ,  .
^  Uo = n 2£ i ----- _ ^ o --------a(Xft) (t/g" )

[/("+» _ £/;<»> {/<"+■> -  2U¡n+i) + U¡2t'} (N - 1) 
a T „ h2 + ih 2 h
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with 1 < i < I — 1, and

t j ( t i + 1)  r j ( n )  2 U ( n + 1 )  -  2 U ( n + 1 )  /  / v \ - p - lUI UI -  atAUI~ 1 ZUI „f„\ÎTT(.n)\ p
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A tn

with =  (fi, 0 < i < I.
As in the case of the explicit scheme, here, we also choose

p + i

Ain =  ft2 ( U l t in) ‘

Let us again remark that for the above implicit scheme, existence and positivity 
of the discrete solution are also guaranteed using standard methods (see, for 
instance [6]). It is not hard to see that urr( 1, t ) =  lim,-—! ancj urr(0, t) =
limr_»o 2ir(TT’<) • Hence, if r =  0 and r =  1, then we see that

ut(0, t) =  N urr(0, £) — a(xo)w_p(0, i), i € (0, T ) ,
Uf(1, £) =  Â wrr(l, t) — a(x/)ii-p(l, i), t € (0, T ) .

These observations have been taken into account in the construction of our 
schemes when i =  0 and i =  I. We need the following definition.

Definition 4 .1. We say that the discrete solution U ^  of the explicit scheme 
or the implicit scheme quenches in a finite time if limn_̂ oo U j^in =  0, and the 
series Y ^=  o ^ n  converges. The quantity ^ n called the numerical
quenching time of the discr'ete solution U^l\

In the sequel, in order to facilitate our discussion, let us define the notion 
of order of our method. In the vast majority of numerical methods, the error 
is expressible in the form of an asymptotic series as

e(h) =  c\hPl +  C2hP2 +  • • • (19)

where the positive integer or real exponents pi have been arranged in an as­
cending order of magnitude, p\ < p2 <  • • •; Cj are constants. The value of p \, in 
particular, defines the order of the numerical method. Let us perform a series 
of m  computations with values of h that differ by a certain positive constant 
factor q — 2 >  1, forming the geometric sequence

h i = e ,  h2 = e jq ,  h3 = £ / q 2, . . . ,  hm = £ / q m~1 . (20)

We denote the corresponding values of the numerical solution by

&i, 62, • • •, bm , (21)
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where bm is the most accurate value. Using Eq. (19), we write

bk+i ~ bk _  efc+i — ek ^  (qQ _  Pl
h +2 -  bk+i ek+2 -  ek+1 ~  _  ( ^ ) " ‘ q

Consequently, we have

^  log((^.+i -  bk) / (bk+2 -  bk+1))
Pl ~  log(2)

The accuracy of this estimate improves as we use more advanced triplets in the 
sequence (21).

In the following tables, in rows, we present the numerical quenching times, 
the numbers of iterations, the CPU times and the orders of the approximations 
corresponding to meshes of 16, 32, 64, 128. We take for the numerical quenching 
time tn =  ]Cj=o wMch is computed at the first time when

A tn =  \tn+1 -  tn| < 10 -16.

The order (s) of the method is computed from

log((T2h -  Th)/(T.th -  T2I,))
S l°g(2)

Numerical experiments for p =  1 , iV =  2

First case: e — 0

T a b l e  1. Numerical quenching times, numbers of iterations, CPU times 
(seconds) and orders of the approximations obtained with the explicit Euler 
method.

I tn n CPU  time 8

16 0.080156 2088 3.4 -
32 0.080039 7654 17.2 -
64 0.080009 27786 125 1.96

128 0.080002 99795 785 2.09
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Table 2. Numerical quenching times, numbers of iterations, CPU times 
(seconds) and orders of the approximations obtained with the explicit Euler 
method.

n C P U  time

16
32
64
128

0.080156
0.080038
0.080008
0.079998

1794
6475
23071
80933

3
13
131

2983
1.97
1.58

Second case: e =  1/10

Table 3. Numerical quenching times, numbers of iterations, CPU times 
(seconds) and orders of the approximations obtained with the explicit Euler 
method.

n  C P U  time

16 0.055760 1547 2.2 
32 0.055641 5663 12.7 
64 0.055609 20634 95 1.89 
128 0.055601 74183 659 2.00

Table 4. Numerical quenching times, numbers of iterations, CPU times 
(seconds) and orders of the approximations obtained with the implicit Euler 
method.

I t n n C P U  time s
16 0.055697 1535 2.3 -

32 0.055610 5661 12.2 -
64 0.055595 20625 122 2.53
128 0.055593 74163 2829 2.91
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Third case: s =  1/100

Table 5. Numerical quenching times, numbers of iterations, CPU times 
(seconds) and orders of the approximations obtained with the explicit Euler 
method.

n CPU  time

16
32
64
128

0.076972
0.076856
0.076827
0.075820

2014
7386

26821
96347

3.1
17

121
862

1.04
1.02

T a b l e  6. Numerical quenching times, numbers of iterations, CPU times 
(seconds) and orders of the approximations obtained with the implicit Euler 
method.

I  t„ n  CPU  time s

16 0.076954 2014 3
32 0.076847 7385 16
64 0.076823 26820 211 2.15
128 0.076817 96343 3617 2.00

Fourth case: e =  1/1000

T a b l e  7. Numerical quenching times, numbers of iterations, CPU times 
(seconds) and orders of the approximations obtained with the explicit Euler 
method.

I t n n CPU  time s

16 0.079827 1261 3 -
32 0.079710 7626 17 -
64 0.079681 27686 177 2.01

128 0.079673 99438 904 1.85
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T a b l e  8. Numerical quenching times, numbers of iterations, CPU times 
(seconds) and orders of the approximations obtained with the implicit Euler 
method.

I t n n C PU  time s
16 0.079825 2080 3 -
32 0.079709 7626 16 -
64 0.079680 27686 149 2.00
128 0.079673 99438 3570 2.05

Remark 4 .1. If we consider the problem (16)-(18) in the case where the po­
tential a(r) =  1, the initial data ip(r) =  | and p = l ,  then we see that the 
numerical quenching time of the discrete solution for the explicit scheme or the 
implicit scheme is approximately 0.08 (see Tables 1  and 2). Let us notice that 
theoretically, we know that value. In fact, since the initial value is constant, 
and the potential equals one, it is well known that the quenching time is that 
of the solution of the following differential equation a'{t) =  —a~p(t), t > 0, 
a(0) =  with p =  1, and this quenching time is equal to 0.08. We observe 
from Tables 3, 4, 5, 6, 7 and 8 that if the above initial data increases slightly, 
then the numerical quenching time also increases slightly. This result confirms 
the theory established in the previous section.
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