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Perfect powers in solutions to Pell 
equations

Potencias perfectas en soluciones a las ecuaciones de Pell
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A b str a c t . In this paper, we study the appearance of perfect powers in the 
first component of a non-minimal solution of a Pell equation. We give an upper 
bound on the counting function of the positive integers n having the property 
that some power of it (of exponent larger than 1) is the first component of 
a non-minimal solution of a Pell equation, and we present a Diophantine 
application.
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R esum en . En este trabajo, investigamos la aparición de las potencias perfectas 
en la primera componente de una solución no minimal de una ecuación de 
Pell. Damos una cota superior sobre la función de conteo del conjunto de los 
enteros positivos n tal que alguna potencia suya con exponente mayor que 1 
es la primera componente de una solución no-minimal de una ecuación de Pell 
y presentamos una aplicación Diofántica.

Palabras y frases clave. Ecuación de Pell.

1. Introduction

Given a positive integer U, we can always write each one of the numbers U2 + 1  
or U2 -  1 as (IV2, where d and V  are integers and d is square-free. Conversely, 
given any square-free number d > 1, the equation

U2 -  dV2 =  ±1, (1)
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usually referred to as the Pell equation has infinitely many positive integer 
solutions (U,V). Let (U \,V \) be the minimal positive integer solution of the 
above equation (1). Put

a =  Ux +  V dV i , (2)

and for each integer t > 1 write

a 1 =  Ut +  VdVt , (3)

witli positive integers Ut and Vt . Then all positive integer solutions (U,V) of 
equation (1) are of the form (U, V) =  (Ut, Vt) for some t > 1 (see, for example, 
Theorem 8.2.9 on page 110 in [7]). Equation (1) has a solution with the sign
— 1 in the right hand side if and only if U2 — dV2 =  —1, and in this case 
U2 — dV 2 — (—1)*. Otherwise, all positive integer solutions of equation (1) 
have the sign -f 1 in the right hand side.

Given d , the problem of determining all the perfect powers in either the 
sequence {Ut)t>i or (V*)t>i has received a lot of interest. For example, when 
U2 — dV2 =  1, then from the combined work of Ljunggren [9] and Cohn [6] it 
follows that if Ut is a square, then either t =  1 or t =  2, and Ut is a square 
for both t =  1 and 2 only when d =  1785. More general results on polynomial 
values in linear recurrence sequences have been proved by Nemes and Petho
[11], and also by Shorey and Stewart [13]. It follows from the above mentioned 
results that there are only finitely many perfect powers in each of the two 
sequences (Ut)t>i and {Vt)t>i-

Here, we assume that U2 — dV 2 =  — 1 and we take a different point of view 
concerning the equation Ut =  n9 for some positive integers n and g with g >  1. 
We fix neither d nor g , but rather take a positive integer n and ask whether or 
not n9 — Ut holds for some positive integers g >  1 and t >  1. In other words, 
we ask whether there exists a positive integer g > 1 such that when writing

t? 9 +  1 =  dv2,

with integers d and v such that d is square-free; the pair (n9, v ) is not the 
minimal solution of the Pell equation U2 — dV2 =  — 1. In what follows, we 
write .4 for the set of such positive integers n. For a positive real number x 
we put ^4(x) =  A  fl [l,x]. In this note, we give an upper bound for #.4(x) as 
x —» oo.

Before mentioning our main result we point out that the set .A(x) has al
ready been investigated in our previous paper [5]. In that paper, we showed 
that the estimate

# A (x )  <  a;(co+o(l))(log log log log log x /  log log log log x ) 1 /3  ̂ ^

holds as x —* oo, where Co =  2(10/3)1/3. Here and in what follows, we use log# 
for the natural logarithm of x. Under the A-BC-conjecture, it was also shown 
that A  is finite. The above results are Lemma 3 in [5].
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In this paper, we improve upon the upper bound (4) on the cardinality of 
A(x). Our main result is as follows.

Theorem 1 . The estimate

#A {x)  < exp ((ci +  o(l)) Vlogxlogloga?) ,

holds as x —> oo, where c\ =  >/l3/2.

As applications, in [5] the positive integers n not in A  were used to cons
truct quadratic fields having class number divisible by any given positive in
teger g. Namely, it was shown that for x > xq, there are are at least x 1 3̂/5 
real quadratic fields K  of discriminant Ak < x whose class group has an ele
ment of order g (even), and this holds uniformly for even positive integers 
g <  (log log x)/(8 log log log x).

Furthermore, consider the equation

(x'n +  \ ) ( y n +  l) =  z \  (5)

in positive integer unknowns (x ,y ,m ,n , z) with xm > yn. In [10), it was 
shown that the ylBC-conjecture implies that equation (5) has only finitely 
many solutions with min{?n,n} > 4. Note that for each solution of equation
(5) there exists a square-free integer d and integers v and w such that xm + 1  = 
dv2, xn + 1  =  dw2. When m >  2 and n > 2 are both even, it follows that both 
({/, V ) =  (xm/2, v) , (yn/2, w) are solutions to the Pell equation U2 - d V 2 =  —1. 
Since xm/2 > yn/2, we get that xm/2 =  f/t for some t >  1. In particular, 
x € A  for m > 2 , therefore our result can be used to yield an unconditional 
upper bound on the number of solutions (x ,y ,m ,n ,z )  to equation (5) with 
max{x, y} < X  below some fixed upper bound X .  We record this as

Corollary 1. Let B(X) be the set of quintuples (x ,y ,m ,n , z ) of positive in
tegers satisfying equation (5) with xm > yn, m, n even, min{m, n} > 4 and 
max{x, y} < X .  Then

# B (X )  < exp ((ex +  o(l)) \/log X  log log

as X  —y oo.

2. Proof of Theorem 1

For any odd positive integer m, let

Pm(X) = (X + '/X2 + 1) + ( X ~ v/X2+.1L  s Z[X) . (6)

For example, Pi(X ) =  X  and Pz(X) =  4 X 3 +  3X, etc. It is known and easy 
to check that Pmn(X) =  Pm{Pn{X))  holds for all odd positive integers m and
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n. It is also well-known, and it can be immediately deduced from formulas (2) 
and (3) that if Uf -  dV? =  - 1, then Ut =  Pt(U i) .

Hence, if n G A{x), then n2g +  1 =  dv2, where d is square-free, and so n9 =  
Ut =  Pt{U\) holds with some integer t >  2. Furthermore, since U2 — dV2 =  
(—l)4, it follows that t is odd. Using the fact that Pmn(X) =  Pm(Pn(X)), it 
follows that we may replace t by any prime factor p of it (necessarily odd) and 
U\ by u =  Ut/p =  Pt/p(U\), and thus assume that

n9 =  Pp(u). (7)

Thus, it remains to count the number of positive integers n < x such that 
relation (7) is satisfied for some integers g > 1, u >  1 and prime p > 3.

Some of the following arguments have already appeared in [5]. We review 
them here in order to make this paper self contained.

The structure of n.

If u =  1, we then get that

Since g >  1, we get that Pp(l) is a perfect power. Since non-degenerate bi
nary recurrent sequences contain only finitely many perfect powers (see [11], 
or Theorem 9.6 on page 152 in [14], for example), we get that the number of 
such exponents p is 0(1). From now on, we assume that u >  1. In this case,

(2u)p -  1 < (« +  Vu2 +  l)P +  (u -  \ /u2 +  l ) P ^ (2« +  l)p ^

Let us take a closer look at the polynomial Pp(X). Its roots are zj =  
¿sin ((2j  +  l)7r/p), j  € { 0 ,1 , . . .  ,p  — 1}. In particular, Pp{X ) has no double 
roots. Hence, from known results about perfect power values of polynomials 
(see Theorems 10.1 on page 169 and 8.1 on page 141 in [14]), we deduce that 
for any fixed p > 3, the equation

Pp(u) -  n9 ,

has only finitely many positive integer solutions (u ,n ,g ). From now on, we 
assume that p >  100.

Now note that u \ Pp(u). Further, it is known that gcd (u, Pp(u)/u) | p , and 
that if this greatest common divisor is p, then p || Pp(u)/u (see [5]). Hence, 
from the equation

n9 =  Pp(u) ,
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we deduce that either

u =  n9, Pp(u)/u =  nf, and nin2 =  n ,

or

u =  p9~1 n9, Pp(u)/u =  pn9, and pn\n2 = n .

Bounding n i and p.

Assume first that ni =  1 . Then, since u > 1 , we have that u = and
pn-2 =  Pp(u)/u. Hence,

x9 > n 9 =  Pp(u) > up/2 =  pP{9~l)/2 > pP^ " 1)/2 > pP»/4 ,

therefore
g\ogx  » p y lo gp ,

giving p <C log x /  log log a:.
Next, assume that ni > 1 . Then logw > <7 log raj, while

p logu log 2 = log(up/2) < log(Pp(u)/u) < log(nfp)
< g\ogn2 + logp,

therefore

, ^ plogu -  log2 ^ logn2 +  (logp)/g  
p  — 1  <  - <  - . ( J )

log U  log Til

Since g > 2 and 712 < x/ni, it follows, from (9), that

(p -  1) log ni < log x  -  logni ~f (logp)/2,

giving n\ < p l!2x, which implies

n\ <C x l!p . (10)

Further, since n\ >  2, g > 2 and «2 < x, we have

k g ^  +  O o g ^  
log 2

Since logp < p/2 — 1 when p >  100, we get that p < 4\ogx. Thus, in both 
cases when n\ =  1 or n\ > 1, we have that

p < 4 1o g x , (11)

provided that x >  xq is sufficiently large.
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Bounding g.

We now deal with the more difficult task of bounding g. It is known that 
2Pp{X) =  Qp(2X), where QP(X) e Z[X] is a monic polynomial. A quick 
way to prove this fact is to first notice, by comparing leading terms, that 
QP(X) € Q[X] is monic, and next to notice that the roots of QP(X ):

are all algebraic integers and Galois conjugates; thus, QP(X) € Q[X] is, in 
fact, a polynomial with integer coefficients. Hence, the equation Pp(u) =  n9 is 
equivalent to Qp(2u) — 2n9.

At this stage, we record a result of Bugeaud from [2].

Lemma 1 . L e t f (X )  =  X d+ a \ X d~1-\-----6 Z[X\ be a monic polynomial of
degree d >  2 with integer coefficients without multiple roots. Assume that a^ O  
and u are integers such that f(u) =  avm. Then, either m < 2d\og(2H +  3) or

where D is the discriminant of f  and H  =  max{|ai|,. . . ,  |ad|} is the naive 
height of f .

We apply Lemma 1 to bound the number g in terms of x. For this, we 
need upper bounds for the parameters H  and |D| associated to the polynomial 
QP(X). Since QP(X)  has only nonnegative coefficients, it follows that

where again Zj =  zsin((2,7 4- l)7r/p), j  =  0 ,... ,p — 1 are the roots of Pp(X).  
Here, we used the fact that Q'p(2X) =  Pp(X), which follows with the chain 
rule from the fact that QP(2X) =  2Pp(X). Since

2Zj =  2¿sin((2j +  1 )tt/í>) =  — e (2J+1)l7r/Pj j  =  0 ,... ,p — 1

m < 2l^ d+6)d7d\D\3/2 (log \D\)3d (log(3|a|))2 log log (27|a|)

Here, Pp{X) =  2P~1X p +  axX p- 1 +  • • • +  ap 6 Z[X]. 
As for the discriminant D  of QP(X), note that

p - i p - 1

i-Di= n  \Qp(2zi )\ = n  -
j =0 j =0

p ; m  =  x [ ( -y + \ / * 2 +  i ) P -  (-y -  + 1 ) " ] , (12)

one checks easily that
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Since

|cos((2j +  1) t t / p )| = | sin((p — 2(2j +  1))tt/(2p))| > sin(7r/(2p)) > 1/p, 

for all j  =  0 ,... ,p  — 1, and p > 3, we get that

\D\ < p 2>.

Thus, from Lemma 1 with a =  2 and f ( X)  =  QP(X), we conclude that either 

g <  2pIog ( ( l  +  >/$)* +  3  ̂ p2 ,

or

<7 < 215 p̂+5 p̂7pp3p(2plogp)3p(log6)2 log log 54.

In both cases,
g <  exp(13p(logp +  O(loglogp))). (13)

We define y  =  c2V^ogx/loglogx, where c2 =  \/2/13. If p < y, then logp < 
(1/2 +  o(l)) loglogx as x —> oo, and the above inequality (13) immediately 
implies that the inequality
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g < exp((c3 +  o(\))y/\ogx\og\ogx)  (14)

holds as x —*■ oo, where C3 =  y l3 /2 .
We now look at the case when p >  y. Estimate (10) implies that

ni <§; x 1/v =  exp ((c3 +  o(l)) \/log x log log rr) . (15)

Further, the constant term ap_ 1 of Pp(u)/u =  Qp(2u)/(2u) is p. This can be 
noticed by observing that this constant term is

ap_ 1 =  lim =  PL(s) =  p  (cf. formula (12)). 
t — > 0  t  y  3= 0

Since u | Pp(u)/u — ap- i ,  we get that n\  | n\ —p, or p9 1nf j pn% —p, according 
to whether u =  nf or pP~l nf .

Assume first that n\ =  1. Then p5-2 | nf — 1. It then follows easily that

« ^ j  / <r 1 \ log n2 , log#S - 2  < ordpfnf — 1) <  ( p -  1 ) - ^ -  +

< p log x +  log g <  4(logx)2 +  logy.

This shows that g (log a;)2 in this case. Hence, inequality (14) holds in this 
case as well if x is large.
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Assume now that n\ >  1. Then nf | n\  — 5, where S € {l,p }. Let q be the 
smallest prime factor of n\. Applying a linear form in g-adic logarithms (see, 
for example, [3]), we get that

g <  ord, (nf -  <S) <  —̂— log n2 log p log g <  ni log x log log x log g,  
log q

which together with inequality (15) implies easily that inequality (14) holds in 
this instance also.

Comparing inequalities (14) and (16), we conclude that estimate

g < exp (̂c3 +  o(l)) y/\og x  log log x^ holds as x —> oo. (16)

Let A p(x) be the number of n < x  corresponding to the same value for p. 
Since n\ and g are bounded as in (10), and (16), and since n2 is determined in 
at most two ways once ni, p and g are fixed, we deduce that if p is fixed then

#^4p(x) <C #{choices for n i} x ^{choices for g)

<  x 1/pexp((c3 +  o(l)) -y/log x log log x) (17)

as x —> oo. Furthermore, if n i < p, then the number of choices for the pair 
(ni,p) is O ^(logx)2^. Writing J\4(x) for the set of n < x for which n\ < p , 
we get that

#A^(x) <C #{choices for g} x (logx)2

< exp((c3 +  o(l))\/logxloglogx). (18)

Thus, from now on we assume that ni > p.

We now distinguish two cases according to whether g is much larger than 
p or not.

The case when g  >  5p.

We write M(x) for the set of such n < x. We treat in detail the case when 
n =  711TI2, and later on we shall indicate the minor adjustments needed to deal 
with the case when n =  pnin2. We then have u =  nf, and

n| =  _  2P-1UP~1 a\up~2 H------h ap_ i .

Replacing u by nf we get,

=  2p-1nf(p_1) +  ainf(p_2) H------b ap_ i .
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We divide both sides of the above equation by n^p-1  ̂ and obtain

9

I — 2P_1

79

n2
,p_1 < a,\ 4- a 2  +  ■ • ■ +  ( i p - 1

n (19)

Recall that a \ , . . . , ap_i are nonnegative coefficients. Since the roots Zj =  
¿sin((2j +  1)7x/p) for j  =  1 , . . .  ,p — 1, of the polynomial Pp( X ) /X  are all at 
most 1 in absolute value, and the first coefficient of this polynomial is 2P_1, it 
follows, from the Viète relations, that

Thus, inequality (19) implies that

\ 9n2

for all k =  1 , . . .  ,p  — 1 .

— 2 P- 1 4 Pp (20)

One checks immediately that the inequality

4 Pp 
ni

<
2ri

2( p - l )

holds, since it is implied by nf 2p > (2p)4p, which is true when g > 5p and 
ni > p >  100. Thus, inequality (19) leads to

n2
n

3 - 1
n2
p̂_1

_̂___ |_ 2(P_1)(9_1)/s <
1

2 Ti2( p — 1)

Since «2 and ni are positive and (p — 1)(^ — 1 )/g >  1, the second factor in the 
left hand side above is larger than 1. Hence, the last inequality above leads to

n2
n‘p - i <

Note that 2 p̂ - 1^ 9 is irrational since g >  5p. By a classical result from the the
ory of continued fractions (see Theorem 8.2.4b on page 108 in [7]), we conclude 
that n2/n \~ l is a convergent of 2̂ p-1^ 3. Since n2 < n < x  and the sequence 
{Pk/Qk}k>0 convergents to the irrational number 2̂ p-1^9 has the property 
that {pk}k>o has exponential growth (in fact, pk > Fk for all k >  0, where Ffc 
is the fcth Fibonacci number), we get that the number of possibilities for n < x 
once p and g are fixed such that g >  5p is 0 (logx).

The same argument applies in the case n =  pn\n2, except that now we get 
that n2/(pni)p_1 is a convergent to (2p~1 /pp)1/g. Thus, in both instances when
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n =  n\ri2 or n =  pn\Ti2 , we get that the number of possibilities for n G Af(x) 
is at most

# N (x )  <̂ . ^{choices for p } x ^{choices for g} x logrc

< exp((c3 +  o(l))\/logxlogloga;), as x —> oo . (21)

The case when g  <  5p.

As a first remark, we observe that inequalities (10) and (17) together with the 
fact that g <̂C p log x, show that

# A p(x) <C x x!p logx. (22)

Next, we digress a bit in order to state a particular version of a result of Evertse 
and Silverman, which is useful for our purpose.

Let L be an algebraic number field of degree t  and class number /i(L). 
Assume that f ( X)  G Z[XJ is a polynomial of degree p having only simple 
roots. With these notations, Evertse and Silverman proved the following result 
(see [8], or Theorem 5A on page 142 of [12]).

Lemma 2. Consider the equation

y 9 =  f ( x ), with x G Z and y G Q* . (23)

(i) Suppose g >  3, p > 2, and L  contains at least two roots of f(x ) .  Then 
the number of solutions of (23) is bounded by

177eg2£h{h) .

80 KALYAN CHAKRABOETY & FLORIAN LUCA

(ii) Suppose g =  2, p >  3 and L  contain at least three roots of f(x ) .  Then 
the number of solutions of (23) is bounded by

713t h(h)2 .

We apply Lemma 2 above to our equation

n9 =  Pp(u). (24)

Fix the prime p and let f ( X )  =  Pp(X) G Q[X]. We may take L =  Q Je2jr*/2P] 
to be the cyclotomic field of degree t  =  (f>{2p) =  p — 1, which contains the 
splitting field of f ( X ) .  Since the discriminant A l of L  is ±pP~2, and by a 
classical result of Landau /i(L) <C \/]AiJ(log |Al|)*- 1 , we get that

h{L) < exp((3/2 +  o(l))plogp),

Volumen 43, Número 1, Año 2009



as p —* oo. By Lemma 2 and the fact that g <  5p, we get at once that the 
number of solutions of (24) for p fixed is at most

# A p(x) < exp ((7/2 + o(l))plogp), (25)

when p —» oo. Inequalities (22), (18), (2 1) and (25), imply immediately that

# A ( x ) < # M ( x )  +  #Af(x)  +  Y ,  M >(*)
p<41ogx

<  exp ^(c3 +  o(l)) \/log X log log X)

+  min logic, exp((7/2 -i- o(l))plogp)^ ,
p<4  log x

as x —> oo. A quick computation reveals that

min (7/2 +  < (c4 +  o(l))'V/loga;loglogx,

as x —► oo, where c4 =  V7/2. Since C3 > C4, we get the desired inequality upon 
ignoring lower order factors and noticing that C3 =  c\.

3. Proof of Corollary 1

Let X  be large and (x ,y ,m ,n ,  z) € B(X). Then x m/2 =  Ut and yn/2 =  Ua 
for some positive integers s < t. Clearly, x & A{X).  Observe that 2 > 0 is 
uniquely determined by (x ,y ,m ,n ),  so it suffices to count the number of such 
quadruples. Let us assume that x <  X  is fixed.

We first bound the number of choices for t. By the primitive divisor theo
rem for Lucas sequences (see [4], for example), for each odd k > 3, the num
ber Uk has a primitive prime factor pk, which is an odd prime not dividing 
dU\U2 • • • Uk~i- It is known that such a prime is congruent to (d\pk) € {± 1} , 
where for an odd prime p  we use (*|p) for the Legendre symbol with respect to 
p. In particular, writing

we observe that for all divisors k >  3 of t we have that Uk \ Ut and that Uk has 
a primitive prime factor pk. Clearly, pk \ x and k | pk ±  1. This shows that

tr(t) / 2 _ JJfc ̂  JJ(pfc + 1) < pj(p-h 1) < xloglogx.
A:|i 3 < k p\x

k\t

Here, we write r(£), u(t) and Q(t) for number of divisors, prime divisors, and 
prime power divisors of t (> 1), respectively. Since t > 2n^ ,  we get that

PERFECT POWERS IN SOLUTIONS TO PELL EQUATIONS 81

2fi(iM *)/2 x log log x ,
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yielding f2(£)r(£) < 4log# once x  is sufficiently large. Since r(£) >  we 
get that < 4 log re, therefore s =  w(t) <  2 log log x once x  is sufficiently 
large. Note that all prime factors of t divide

I I  (P “  (dlP)) ’
3<p, p \x  

p  Yd

which is a number having at most log x distinct prime factors for large enough 
values of x. Furthermore, the multiplicity a* of each prime factor r* of t is at 
most f2(t) < 41ogx. Thus, the number of possibilities for t once x is fixed is at 
most

(4Iog*)2- ° s ’ ( L2| ^ x J)  <  exp ( 5 (loglogX)2) , (26)

for sufficiently large values of X .  From now on, we assume that both x and t 
are fixed. Observe that, by the primitive divisor theorem again, if t >  3, then 
t | (p ±  1 ) for some prime factor p of x, and, in particular, t < x -f 1 .

Observe that the count (26) on t is already of order exp(o(\/IogX)) as 
X  —» 00. In what follows, we will show that the count on n is of order at most 
polynomial in log X .  This would later imply that the counts on t, s and m  are 
also bounded polynomially in logX, which will then complete the proof of this 
corollary.

So, let us look at n and let us assume that n > 20 log X .  Write

It is well-known that if a prime q divides both U\ and Ut/U\ , then q divides 
t. Furthermore, if q^\\Ui and g7 ||£, then g/3+7 ||t/i . Armed with these facts, we 
first conclude that if qj(t, then (n/2) | /?. If on the other hand q \ t, then q 1 | 
and (3 +  7 is a multiple of n/2. To summarize, there exists a positive integer 
x\ dividing x such that

where i  is a divisor of t. We may also assume that x\ >  1 , since otherwise XJ\ =  
1, therefore xn/2 =  Ut and ym/2 =  Us are both perfect powers of exponents 
n/2 and m/2, respectively (both larger than 1 ), in the recurrence of general 
term

U k = (i  +  W k + ( i - ^ \

and as we have already mentioned it is known that there are only finitely many 
such possibilities for the quadruple (x, y,m, n).
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Putting now X2 =  x/xi, we get
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n /2 _  Pt{U\) _  0t-lTTt-lX o  =
Ui

(27)

where we again use

Pt (X) (.X  +  s f W T l ) 1 +  (X  -  y / W + l ) 1 
X  2X

= 2t~1X t~ 1 H---- +  at~\ e Z[ X] . (28)

We rewrite relation (27) as

n / 2

-  1

Replacing U\  by x^ 2 / i  in the left hand side of the above expression, and 
using the formula (28) for Pt{U\) to rewrite the right hand side of the above 
expression, we get

)•->
( t - l ) n /2 -  1 < l u1± £ T ± l ) \ ( u l z ^ f n ) t (29)

2Ui 2 Ui

We now study the right hand side of the above expression. Observe that

Ui +  ^ / U f + l  
2Ui -(1 + 5 (v1 + i  \

= (1 + °(c^)) =exp (° (t̂ )) • (30)
Observe further that

t l
Ul -  Ui x^  x " 12 x f 4 '

(31)

where the last inequality follows because it is implied by x ^ A >  x2, which is 
implied by 2” > x8, which in turn holds because n >  20 log X.

Next observe that

2Ui
(32)

Ui x?/4 *
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Thus, from estimates (30), (31) and (32), we get that

U1 + y/Ü f+T\ U! - y/Ü[+I _
2Ui J  \  2i/i )

<  | exp ( O ( —̂77 ̂  1  — 1 I +n/4 I / ~n/4 \ \^1 / / / 1
1

which together with estimate (29) leads to

| 4 /2(i/2)‘- 1x r (‘ - 1)n/2 -  1 «  • (33)
1 x x‘

The left hand side above is nonzero, since if it were, then we would get that

=  2t~l U\-Pt(U\) _  oi_ ir7.t_i
~ Ü T ~ '

which is not possible for t >  1 since then the left hand side above is larger than 
the right hand side above. Applying now a lower bound for a linear form in 
logarithms a la Baker [1] to the nonzero expression

with c*i =  X2, «2 =  ^/2, c*3 =  xi,  b\ =  n/2, b2 =  t — 1  and 63 =  —(t — l)n/2, 
we get that the left hand side above is bounded from below by

exp ( -c 5(logX)3 log(Xn)),

where C5 is some positive constant. Thus, we get that

exp (—c5(log X )3 log(ATn)) <  ,
x i

leading to
n log 2 <  4c5 (logX)3 log(Xn),

which yields n < C6(logX)4 for some absolute constant cq . Hence, xn! 2 =  
exp (O(logX)5). Since xn! 2 =  Ut >̂ (\/2 -1- 1)4, we get that t  C  (logX)5, and 
since s <  t, we get that s -C (logX)5 also. Finally, having fixed n <C (log AT)4 
and both t and s of sizes O ((log X )5) , we have that ym/2 =  US is a fixed number 
on the scale exp (0((logX)5)). Since y >  1 , we get that m  can be fixed in

Volumen 43, Número 1, Año 2009



O ((log*)5) ways, after which y is uniquely determined. This argument shows 
that we have

# B (X )  < 0 (1) 4- ^{choices for x} x #{choices for n}
x ^{choices for t} x ^{choices for s} x ^{choices for m}

«  # A ( X )  x (logA')4 x (log* ) 5 x (log* ) 5 x (logA-)5 

< exp ((ci +  o(l))\/logXloglogX) ,

as X  —> oo, as desired. This completes the proof of Corollary 1.
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