Weakly compact cardinals and κ -torsionless modules

Cardinales compacto débiles y módulos κ -sin torsión

JUAN A. NIDO V.¹, PABLO MENDOZA I.², LUIS M. VILLEGAS S.^{3,a}

¹Universidad Autónoma de la Ciudad de México, México D. F., México

 2 Instituto Politécnico Nacional, México D. F., México 3 Universidad Autónoma Metropolitana Iztapalapa, México D. F., México

ABSTRACT. We shall prove that every κ -torsionless R-module M of cardinality κ is torsionless whenever κ is weakly compact and $|R| < \kappa$. We also provide some closure properties for ultraproducts and direct products of κ -torsionless modules. We give an example of a κ -torsionless module which is not torsionless, when κ is not weakly compact.

Key words and phrases. Torsionless module, κ -torsionless module, weakly compact cardinal, slender rings.

2000 Mathematics Subject Classification. 03E02,03E55, 16D80, 03E75, 03C20.

Resumen. En este trabajo se demuestra que todo R-módulo κ -sin torsión M de cardinalidad κ es sin torsión cuando $|R|<\kappa$. También establecemos algunas propiedades de cerradura para ultraproductos y productos directos de módulos κ -sin torsión. Damos un ejemplo de un módulo κ -sin torsión que no es sin torsión, cuando κ no es compacto débil.

Palabras y frases clave. Módulo sin torsión, módulo κ -sin torsión, cardinal compacto débil, anillo delgado.

^a This research was partially supported by CONACYT, Mexico (sabbatical grant).

1. Introduction

This paper concerns the theory of κ -torsionless modules. In [3] we find the notion of κ -torsionless group which can be generalized to modules in a natural way: an R-module M is torsionless if it can be embedded in a product of copies of R. An R-module M is κ -torsionless if every R-submodule N of M of cardinality less than κ is torsionless. Clearly, every torsionless module M is κ -torsionless. It is natural to ask whether the converse is true.

In the above mentioned paper it is shown, among other things, that an ultraproduct of κ -torsionless abelian groups is κ -torsionless whenever κ is a strongly compact cardinal. We show in this work that the ultraproduct of a family of torsionless R-modules is torsionless whenever κ is measurable (a strongly compact cardinal is measurable, but the converse is not necessarily true). We prove a similar result for a family of κ -torsionless R-modules.

Wald [10] shows that every κ -torsionless group of cardinality κ , where κ is a weakly compact cardinal, is torsionless. He also gives a counterxample for κ not weakly compact.

In this note we further elaborate this result in the following way. If M is a κ -torsionless module M of cardinality κ and κ is weakly compact, then M is torsionless. Finally, we construct an example of a κ -torsionless R-module of cardinality κ which is not torsionless, where κ is not weakly compact. The latter result holds for slender rings, a large class of rings which contains \mathbb{Z} .

In section 2 we gather some auxiliary results about weakly compact cardinals, measurable and \aleph_0 -measurable, that will be used throughout this paper. §3 is devoted to some characterizations and properties of torsionless modules.

Section 4 has a study of cartesian products and ultraproducts of torsionless and κ -torsionless modules. In §5 we say how to prove the afore mentioned result. Namely: if M is a κ -torsionless R-module, with κ weakly compact, $|M| = \kappa$ and $|R| < \kappa$, then M is torsionless. Finally, in section 6, the mentioned counterexample is constructed when κ is not a weakly compact cardinal following the example of Wald.

We have attempted to make this paper accessible both to algebraists and to set-theoreticians. Thus we have included some well known results with their full proofs, mainly those of set-theoretical nature.

2. Preliminaries

As usual \aleph_0 denotes the first infinite cardinal and $\mathbb Z$ the set of all integers.

If X is a set, $\wp(X)$ will denote the set of all subsets of X. If $f: X \to Y$ is a function, its image Im(f) is $f[X] = \{f(x) : x \in X\}$.

If f is a module homomorphism, Ker f is its kernel. If R is an associative ring which is not necessarily commutative, R_R means we think of R as of a right R-module. For every set x, |x| denotes its cardinality. ZFC represents

the usual axiomatization of set theory, namely the Zermelo-Fraenkel-Axiom of Choice system, which is the framework for this paper. The von Neumann hierarchy $\{V_{\alpha} : \alpha \in Or\}$, where Or is the class of all the ordinals, is defined by transfinite recursion as:

$$egin{aligned} V_0 &= \emptyset \ V_{lpha+1} &= \wp(V_lpha) \ V_\lambda &= igcup_{eta < \lambda} V_eta & ext{if λ is a limit ordinal} \ V &= igcup_{lpha \in Or} V_lpha, \end{aligned}$$

where V is the class (or universe) of all sets. If M is an R-module, $K \subseteq Y$, we denote by $\langle Y \rangle$ the R-submodule of M generated by Y.

Given a family $\{X_{\alpha}: \alpha \in I\}$ of sets, we form its cartesian product $X = \prod_{\alpha \in I} X_{\alpha}$, where every element $b \in X$ can be written componentwise as $b = (b(\alpha): \alpha \in I)$ and $b(\alpha) \in X_{\alpha}$ for every $\alpha \in I$.

A crucial notion in this work is that of weakly compact cardinal, which we now define.

Definition 1. Let κ be a cardinal. The language $L_{\kappa\kappa}$ generalizes the first order formal language: it contains predicate, function and constant symbols. It has κ variables and allows conjunction and disjunction of less than κ formulas and quantification of less than κ variables. We say that a set of $L_{\kappa\kappa}$ -formulas is κ -satisfiable if every subcollection of less than κ of these formulas is satisfiable. Finally, the cardinal κ is weakly compact if and only if when a collection of $L_{\kappa\kappa}$ -predicates is κ -satisfiable, then it is satisfiable, provided the collection has at most κ nonlogical symbols.

Among the various characterizations for weakly compact cardinals the following two will be those we shall use.

Theorem 2 (Keisler). The cardinal κ is weakly compact if and only if κ has the extension property: for each $R \subseteq V_{\kappa}$ there exists a transitive set $X \neq V_{\kappa}$ and $S \subseteq X$ such that

$$\langle V_{\kappa}, \in, R \rangle \prec \langle X, \in, S \rangle$$
,

where $\kappa \in X$.

Proof. See, for instance, [6, Theorem 4.5].

Ø

Definition 3. We recall that for $x \subseteq Or$, $[x]^{\gamma} = \{y \subseteq x : y \text{ has ordinal type } \gamma\}$. The partition relation:

$$\beta \longrightarrow (\alpha)^{\gamma}_{\delta}$$

assures that for any $f: [\beta]^{\gamma} \to \delta$ there exists a set $H \in [\beta]^{\alpha}$ homogeneous for f. That is, $|f[[H]^{\gamma}]| \leq 1$.

Theorem 4. The cardinal κ is weakly compact if and only if $\kappa \longrightarrow (\kappa)_2^2$.

Proof. See, for instance, [6, Theorem 7.8].

Q

We must pay attention to other large cardinals: the measurable ones.

Definition 5. An ultrafilter \mathcal{U} is κ -complete if for each $\lambda < \kappa$ and every family $\{U_{\alpha} : \alpha < \lambda\} \subseteq \mathcal{U}$, we have that $\bigcap_{\alpha < \lambda} U_{\alpha} \in \mathcal{U}$.

Definition 6. An uncountable cardinal κ is measurable if there exists a non-principal ultrafilter which is κ -complete in κ .

Proposition 7. If κ is measurable, then κ is weakly compact.

Proof. See, for instance, [6, Proposition 4.3].

Ø

Lemma 8. ([6, Exercise 2.7]) An ultrafilter \mathbb{U} in κ is κ -complete if and only if for every $\lambda < \kappa$ and $\bigcup \{U_{\alpha} : \alpha < \lambda\} \in \mathbb{U}$, there exists $\alpha < \lambda$ such that $U_{\alpha} \in \mathbb{U}$.

Proof. We first assume that \mathcal{U} is κ -complete, that $\lambda < \kappa$ and $\bigcup \{U_{\xi} : \xi < \lambda\} \in \mathcal{U}$. Suppose that $U_{\xi} \notin \mathcal{U}$ for every $\xi < \lambda$. Since \mathcal{U} is an ultrafilter, $\kappa - X_{\xi} \in \mathcal{U}$ for every $\xi < \lambda$. Therefore,

$$\bigcap_{\xi < \lambda} (\kappa - U_{\xi}) = \kappa - \bigcup_{\xi < \kappa} U_{\xi} = U \in \mathcal{U}.$$

But then $U \cap \bigcup_{\xi < \lambda} U_{\xi} = \emptyset \in \mathcal{U}$, a contradiction.

Conversely, suppose that the condition holds. We prove that \mathcal{U} is κ -complete. To reach a contradiction let us suppose that there are $\lambda < \kappa$ and $\{U_{\alpha} : \alpha < \lambda\} \subseteq \mathcal{U}$ such that $\bigcap_{\alpha < \lambda} U_{\alpha} \notin \mathcal{U}$. Then,

$$\kappa - \bigcap_{\alpha < \lambda} U_{\alpha} = \bigcup_{\xi < \lambda} (\kappa - U_{\xi}) = U \in \mathfrak{U}.$$

But, according to the lemma's condition, $\kappa - U_{\xi} \in \mathcal{U}$, for some $\xi < \lambda$, and this yields a contradiction.

Definition 9. The uncountable cardinal κ is \aleph_0 -measurable if there exists a nonprincipal ultrafilter which is \aleph_1 -complete in κ .

It is clear that every measurable cardinal κ is \aleph_0 -measurable. In case there were \aleph_0 -measurable cardinals, we identify the least of them as \varkappa .

The following are well known results, but we prove them for the sake of completeness.

Theorem 10. Let \mathcal{U} be an \aleph_1 -complete utrafilter on the uncountable cardinal κ . Then, \mathcal{U} is \varkappa -complete.

Proof. Let $\lambda < \varkappa$. We shall prove that $\bigcap_{\alpha < \lambda} U_{\alpha} \in \mathcal{U}$. Let's suppose this is not true, then, according to Theorem 8, there exists a family $W = \{X_{\alpha} : \alpha < \lambda\}$ whose union belongs to \mathcal{U} , but $X_{\alpha} \notin \mathcal{U}$ for every $\alpha < \lambda$. Without loss of generality we can assume that the X_{α} are pairwise disjoint.

Set

$$V = \left\{ A \subseteq W : \bigcup A \in \mathcal{U} \right\}.$$

It is clear that $W \in \mathcal{V}$ and that no finite subset of W belongs to \mathcal{V} . Let's suppose that $A \in \mathcal{V}$ and that $A \subseteq B \subseteq W$. Then $\bigcup A \in \mathcal{U}$ and $\bigcup A \subseteq \bigcup B$, so that $\bigcup B \in \mathcal{U}$; hence, $B \in \mathcal{V}$. If $A \subseteq W$, then $\bigcup A \cup \bigcup (W - A) = \varkappa$. Therefore, $\bigcup A \in \mathcal{U}$ or $\bigcup (W - A) \in \mathcal{U}$. Thus, $A \in \mathcal{V}$ or $W - A \in \mathcal{V}$.

Finally, suppose that $A_n \in \mathcal{V}$, for each $n \in \omega$. Then, for each $n \in \omega$, we have that $\bigcup A_n \in \mathcal{U}$, which implies, by virtue of the \aleph_1 -completeness of \mathcal{U} , that

$$\bigcap_{n\in\omega}\left(\bigcup A_n\right)\in\mathcal{U}.$$

Since the sets in W are pairwise disjoint, we obtain that

$$\bigcap_{n\in\omega}\left(\bigcup A_n\right)=\bigcup\left(\bigcap_{n\in\omega}A_n\right),$$

from which it follows that $\bigcap_{n\in\omega}A_n\in\mathcal{V}$.

We have proved that \mathcal{V} is a nonprincipal ultrafilter which is \aleph_1 -complete in W. Since W has cardinality λ and $\lambda < \varkappa$, we have a contradiction due to the definition of \varkappa . Consequently, \mathcal{U} is λ -complete.

Lemma 11. Every cardinal $\lambda > \varkappa$ is \aleph_0 -measurable.

Proof. Let $\lambda > \varkappa$ and let $\mathcal U$ be an ultrafilter that is \aleph_1 -complete in \varkappa . Take the family

$$\mathfrak{F} = \{ W \subseteq \lambda : \exists X \in \mathfrak{U}(X \subseteq W) \}.$$

Let \mathcal{V} be the ultrafilter generated by \mathcal{F} . Then, \mathcal{V} is an ultrafilter which is \aleph_1 -complete in λ . Therefore, λ is \aleph_0 -measurable.

We know that if κ is weakly compact, then it is regular and a strong limit. That is, for every $\lambda < \kappa$ we have that $2^{\lambda} < \kappa$. Besides, if $H(\kappa)$ represents the set of sets whose transitive closure has cardinality less than κ , then $V_{\kappa} = H(\kappa)$, where V_{κ} is the κ -th level in von Neumann's hierarchy.

3. Torsionless Modules

In this section we provide the definitions and some important results about torsionless modules.

Definition 12. Let R be a ring with 1 and let M be a unitary right R-module. The dual of M is the left R-module $M^* = Hom_R(M,R)$. If M is a left R-module, its dual is a right R-module. The dual of M^* is a right R-module M^{**} and there is a natural homomorphism $\sigma: M \to M^{**}$ given by $\sigma(m)(f) = f(m)$ for every $f \in M^*$. If the homomorphism σ is an isomorphism we say that M is a reflexive module, while if σ is injective we say that M is semirreflexive or a right torsionless R-module.

The following is a well known result (see [7]).

Theorem 13. For every right R-module M the sequence

$$0 \longrightarrow M^* \stackrel{\sigma}{\longrightarrow} M^{***}$$

is exact and splits, where σ is the natural homomorphism from M^* to its double dual. In particular, M^* is a torsionless module.

Let $X \subset M$. We denote by l(X) the set $l(X) = \{f \in M^* : f(x) = 0, \forall x \in X\}$. If $X \subset M^*$, r(X) is the set $r(X) = \{x \in M : f(x) = 0, \forall f \in X\}$.

We now give several characterizations for torsionless modules.

Proposition 14. The following conditions for a right R-module M are equivalent.

- (i) M is a torsionless module.
- (ii) $r(M^*) = 0$.
- (iii) If $0 \neq a \in M$, then there is an $f \in M^*$ such that $f(a) \neq 0$.
- (iv) M can be embedded in a direct product of copies of R_R .
- (v) For every nontrivial homomorphism of right R-modules $M_0 \longrightarrow M$, there is a homomorphism $M \longrightarrow R$ such that the composite homomorphism $M_0 \longrightarrow M \longrightarrow R$ is not zero.
- (vi) M is a submodule of a dual module.
- *Proof.* (i) \Rightarrow (ii). Let $x \in r(M^*)$. That is, f(x) = 0 for every $f \in M^*$, so $x \in \bigcap_{f \in M^*} Ker f = (0)$, since M is a torsionless module. Therefore, x = 0.
- $(ii) \Rightarrow (iii)$. Let $a \in M$, $a \neq 0$, then $a \notin r(M^*)$. Therefore, there is at least one $f \in M^*$ such that $f(x) \neq 0$.

 $(iii) \Rightarrow (iv)$. Let us consider the product $\prod_{f \in M^*} R_f$ with $R_f = R$, and define the homomorphism $\lambda : M \to \prod_{f \in M^*} R_f$ given by $\lambda(m)_f = f(m) \in R_f$. Observe that

$$\lambda(m) = 0 \Leftrightarrow f(m) = 0, \quad \forall f \in M^*.$$

By (iii):

$$\lambda(m)=0 \Longleftrightarrow m=0.$$

That is $Ker \lambda = (0)$. So λ is injective.

- $(iv) \Rightarrow (v)$. Let $\varphi: M_0 \longrightarrow M$ be a nonzero homomorphism and $m_0 \in M_0$ such that $\varphi(m_0) = m \neq 0$. Then, $0 \neq \lambda(m) \in \prod_{f \in M^*} R_f$. We take a nonzero component of $\lambda(m)$, say $\lambda(m)(f_0) \in R_{f_0}$. Then, the homomorphism $\psi: M \longrightarrow R_{f_0}$ given by $\psi = \pi_{f_0} \circ \lambda$, is such that $\psi \circ \varphi$ is nonzero.
- $(v) \Rightarrow (i)$ Let us suppose that M is not torsionless. That is, $M_0 := Ker \sigma \neq (0)$, where σ is the homomorphism from Definition 12. So, the inclusion $M_0 \hookrightarrow M$ is a nonzero homomorphism. Then, by (v), there is a homomorphism $\varphi: M \longrightarrow R \ (\varphi \in M^*)$ such that $\varphi \upharpoonright M_0 : M_0 \longrightarrow R$ is nonzero. That is, there exists $m_0 \in M_0$ such that $\varphi(m_0) \neq 0$; but this contradicts the fact that $m_0 \in Ker \varphi$, because in that case $\varphi(m_0) = 0 \in M^{**}$ and $\sigma(m_0)(\varphi) = \varphi(m_0) = 0$.
- $(i) \Rightarrow (vi)$. If M is a torsionless module, M is isomorphic to $\sigma(M)$ which is a submodule of the dual of M^* .
- $(vi) \Rightarrow (i)$. If M is a submodule of N^* , then invoking Theorem 13 we conclude that M is a submodule of a torsionless module. Hence, M is a torsionless module.

It is now an easy matter to prove the following properties.

- (1) If M is a right R-module, we have that $Ker \sigma = \bigcap_{b \in M} Ker b$, where σ is the homomorphism from Definition 12.
- (2) M is a torsionless module if and only if $\bigcap_{f \in M^*} Ker f = (0)$.
- (3) If N is a submodule of M and M is a torsionless module, then N is a torsionless module.
- (4) R is a torsionless R-module since $R^{**} = R$.
- (5) Quotients of torsionless modules are not necessarily torsionless modules:

Example 15. The \mathbb{Z} -module \mathbb{Z} is torsionles. However, $\mathbb{Z}/n\mathbb{Z}$ is not a torsionless group. Indeed, $(\mathbb{Z}/n\mathbb{Z})^* = (0)$ from which $\sigma = 0$ follows. That is, σ is not injective.

The following proposition tells us when a quotient module is a torsionless module.

Proposition 16. Let M be a right R-module and N a submodule of M. Then the following conditions are equivalent:

- (i) M/N is a torsionless module.
- (ii) If $m \in M N$, then there is $f \in M^*$ such that $f(m) \neq 0$, and f[N] = 0.
- (iii) r(l(N)) = N.
- *Proof.* (i) \Rightarrow (ii). Since M/N is torsionless for $a \in M N$, that is, $0 \neq \bar{a} = a + N \in M/N$, there is a homomorphism $\bar{f}: M/N \to R$ with $\bar{f}(\bar{a}) \neq 0$. We define $f(m) = \bar{f}(\bar{m})$. It is clear that $f \in M^*$. Then, $f(a) = \bar{f}(\bar{a}) \neq 0$. Besides, $f(n) = \bar{f}(\bar{n}) = 0$ for every $n \in N$. Therefore, f[N] = 0.
- $(ii) \Rightarrow (iii)$. In general we have that $N \subseteq r(l(N))$. We shall show that $r(l(N)) \subseteq N$. Let $x \in r(l(N))$. If $x \notin N$, then, by (ii), there is $f \in M^*$ such that $f(x) \neq 0$ and f[N] = 0. This contradicts the fact that $x \in r(l(N))$ since $f \in l(N)$.
- $(iii) \Rightarrow (i)$ Let us suppose that M/N is not a torsionless module, hence there exists $\bar{m} = m + N$, with $m \notin N$ such that for every $f^* \in (M/N)^*$, $f^*(\bar{m}) = 0$.

Claim. $m \in r(l(N))$.

Indeed, if $f \in l(N)$, we define $f^* \in (M/N)^*$ by $f^*(x+N) = f(x)$. This function is well defined since $f \in l(N)$. Then, $f^*(\bar{m}) = f(m) = 0$. That is, $m \in r(l(N))$, in oposition to (iii), since $m \in r(l(N)) - N$.

4. κ -torsionless modules

In this section we investigate some properties of torsionless and κ -torsionless modules mainly related with cartesian products and with ultraproducts module κ -complete ultrafilters.

Definition 17. Let κ be a regular cardinal and M an R-module. We say that M is a κ -torsionless module if every submodule N of M with $|N| < \kappa$ is torsionless.

If λ is a singular cardinal, we say that an R-module M is λ -torsionless if M is κ -torsionless for every regular cardinal $\kappa < \lambda$.

Clearly, if M is torsionless, then it is κ -torsionless. The converse, does not necessarily hold as we shall see later on. However, the answer depends on a large cardinal. Namely, on a weakly compact cardinal.

Note that κ -torsionless is not preserved under homomorphic images, since every R-module is the image of a free R-Module, which, being torsionless, is κ -torsionless.

However this class behaves well with respect to cartesian products:

Theorem 18. Let $\{M_{\alpha} : \alpha < \kappa\}$ be a family of R-modules that are κ -torsionless. Then $M = \prod_{\alpha < \kappa} M_{\alpha}$ is κ -torsionless.

Proof. Let L < M be a submodule of M with $|L| < \kappa$ and $b \in L$, $b \neq 0$. Since $b \neq 0$, there is $\alpha < \kappa$ such that $b(\alpha) \neq 0$. Take the projection $p_{\alpha} : M \to M_{\alpha}$ and note that $p_{\alpha}[L] \leq M_{\alpha}$ and that $|p[L]| < \kappa$. Then there is, by hypothesis, an $f_{\alpha} : M_{\alpha} \to R$ such that $f(b(\alpha)) \neq 0$. Let $f = f_{\alpha} \circ p_{\alpha} \upharpoonright L : L \to R$. We have that $f(b) \neq 0$, as we require, and so M is κ -torsionless.

An appeal to this proof establishes a similar result for torsionless modules.

We now turn to ultraproducts of modules. We first investigate the ultraproduct of torsionless modules. In the following result we use ideas from [9]:

Theorem 19. Let $\{M_{\alpha} : \alpha < \kappa\}$ be a family of torsionless R-modules with $|R| = \lambda < \kappa$, where κ is a measurable cardinal. If $\mathfrak U$ is a κ -complete ultrafilter on κ , then

$$\overline{M} = \prod_{\alpha \le \kappa} M_{\alpha} / \mathfrak{U}$$

is a torsionless R-module.

Proof. Let $M=\prod_{\alpha<\kappa}M_{\alpha}$, $\overline{M}=\prod_{\alpha<\kappa}M_{\alpha}/\mathcal{U}$, $\overline{a}\in\overline{M}$, $\overline{a}\neq0$ and let $f:\overline{M}\to M$ be a function that chooses representatives. That is, if $\overline{m}\in\overline{M}$, then $f(\overline{m})$ chooses a representative $m\in M$, in such a way that if $\pi:M\to M/\mathcal{U}$ is the canonical homomorphism, then $\pi(m)=\overline{m}$. Since π is an R-homomorphism and $\overline{a}\neq0$, we infere that $f(\overline{a})(\alpha)\neq0$ for κ coordinates. Actually,

$$I = \{\alpha < \kappa : f(\overline{a})(\alpha) \neq 0\} \in \mathcal{U}.$$

For each $i \in I$ we choose R-homomorphisms $g_{\alpha}: M_{\alpha} \to R$, such that $g_{\alpha}(a(\alpha)) \neq 0$. Thus,

$$\{\alpha < \kappa : g_{\alpha}(a(\alpha)) \neq 0\} \in \mathcal{U}.$$
 (1)

We define an R-homomorphism $g: M \to R^{\kappa}$, by:

$$(g(m)(\alpha)): \alpha < \kappa) = (g_{\alpha}(m(\alpha)): \alpha < \kappa),$$

for every $m \in M$. Letting $\overline{g(a)}$ be the class in R^{κ}/\mathfrak{U} of $(g_{\alpha}(a(\alpha)) : \alpha < \kappa) \in R^{\kappa}$ and invoking (1) we obtain that $\overline{g(a)} \neq 0$.

We have the maps:

- (1) $f: \overline{M} \to M;$
- (2) $g: M \to R^{\kappa}$;
- (3) $\nu: R^{\kappa} \to R^{\kappa}/\mathcal{U}$, the canonical R-homomorphism.

Hence, $h_1 = \nu \circ g \circ f : \overline{M} \to R^{\kappa}/\mathcal{U}$, is a well defined R-homomorphism such that $h_1(\overline{a}) \neq 0$. We need an R-homomorphism $h_2 : R^{\kappa}/\mathcal{U} \to R$ with $h_2(h_1(\overline{a})) \neq 0$.

For each $\overline{x} \in R^{\kappa}/\mathcal{U}$, we let $\overline{f}(\overline{x}) = \overline{x} \in R^{\kappa}$, so that $\overline{x} = (x(\alpha) : \alpha < \kappa)$ and every $x(\alpha) \in R$, where \overline{f} is a function that chooses a representative, like f. Now let

$$U_r^{\vec{x}} = \{\alpha < \kappa : x(\alpha) = r\},\$$

hence, $\{U_r^{\vec{x}}: r \in R\}$ is a partition of κ with less than κ elements, since $|R| < \kappa$. By Lema 8, there exists $r \in R$ such that $U_r^{\vec{x}} \in \mathcal{U}$. We now define $h_2(f(\overline{x})) = r$.

It suffices to show that h_2 is an R-homomorphism. Let $\overline{x}, \overline{y} \in R^{\kappa}/\mathcal{U}$. We must verify that $h_2(f(\overline{x}+\overline{y})) = h_2(f(\overline{x})) + h_2(f(\overline{y}))$. So, let us suppose that $h_2(f(\overline{x})) = r_x$ and $h_2(f(\overline{y})) = r_y$. It is enough to prove that $U_{r_x+r_y}^{\overline{x}+\overline{y}} \in \mathcal{U}$, for which it is sufficient to prove that

$$U_{r_x}^{\vec{x}} \cap U_{r_y}^{\vec{y}} \subseteq U_{r_x+r_y}^{\vec{x}+\vec{y}}.$$

If $\alpha \in U_{r_x}^{\vec{x}} \cap U_{r_y}^{\vec{y}}$, then $x(\alpha) = r_x$ and $y(\alpha) = r_y$, so that $(x+y)(\alpha) = r_x + r_y$. Hence, $\alpha \in U_{r_x+r_y}^{\vec{x}+\vec{y}}$.

Now let $s \in R$ and $\overline{x} \in R^{\kappa}/\mathcal{U}$, we will show $h_2(sf(\overline{x})) = sh_2(f(\overline{x}))$. Assume that $h_2(f(\overline{x})) = r_x$. If $\alpha \in h_2(\overline{x})$, then $x(\alpha) = r_x$, so $sx(\alpha) = sr_x$, therefore $\alpha \in U^{s\overline{x}}_{sr_x}$. Then, $U^{s\overline{x}}_{sr_x} \in \mathcal{U}$, from which it follows, by definition of h_2 , that

$$h_2(sf(\overline{x})) = sr_x = sh_2(f(\overline{x})).$$

Consequently, h_2 is an R-homomorphism. Therefore, we have found an R-homomorphism $h: \overline{M} \to R$ such that $h(\overline{a}) \neq 0$. We apply h_1 and h_2 consecutively to \overline{a} and get $h_2 \circ h_1(\overline{a}) \neq 0$.

We can obtain a similar result for κ -torsionless modules.

Theorem 20. Let κ be a measurable cardinal and let $\{M_{\alpha} : \alpha < \kappa\}$ be a family of κ -torsionless R-modules with $|R| = \lambda < \kappa$. If U is a κ -complete ultrafilter on κ , then

$$\overline{M} = \prod_{\alpha \le \kappa} M_{\alpha}/\mathcal{U}$$

is a κ -torsionless R-module.

Proof. Let $M=\prod_{\alpha<\kappa}M_{\alpha}$, and let \overline{N} be an R-submodule of \overline{M} of cardinality less than κ , take $\overline{a}\in\overline{N}$, with $\overline{a}\neq\overline{0}$, let $\pi:M\to\overline{M}$ be the canonical homomorphism, and let $f:\overline{N}\to M$ be a function that chooses representatives in M for each $\overline{n}\in\overline{N}$. Then $f(\overline{a})(\alpha)\neq0$ for κ coordinates. Otherwise, $\overline{a}=\overline{0}$, since $\mathcal U$ is a κ -complete ultrafilter, hence, its members $U\in\mathcal U$ have cardinality κ .

Consider the following family of sets:

$$A_{\alpha} = \{ f(\overline{n})(\alpha) : \overline{n} \in \overline{N} \},$$

for each $\alpha < \kappa$. Then $|A_{\alpha}| < \kappa$ and so, every R-module $N_{\alpha} = \langle A_{\alpha} \rangle$ in M_{α} has cardinality less than κ . Since every M_{α} is κ -torsionless, it follows that each N_{α} ($\alpha < \kappa$) is torsionless. For each $\alpha < \kappa$ we have an R-homomorphism $g_{\alpha} : N_{\alpha} \to R$ such that $g_{\alpha}(f(\overline{a})(\alpha)) \neq 0$ whenever $\alpha < \kappa$ with $\overline{a}(\alpha) \neq 0$.

We define a function $g: N \to R^{\kappa}$, where $N = \prod_{\alpha < \kappa} N_{\alpha}$, in the following way: if $x \in N$, $g(x) = (g_{\alpha}(x(\alpha)) : \alpha < \kappa) \in R^{\kappa}$. Clearly, g is an R-homomorphism. We now define $h_1 = \nu \circ g \circ f : \overline{N} \to R^{\kappa}/\mathfrak{U}$, where $\nu: R^{\kappa} \to R^{\kappa}/\mathfrak{U}$ is the canonical quotient R-homomorphism. We can easily verify that h_1 is a well defined R-homomorphism.

We still have to construct an R-homomorphism $h_2: R^{\kappa}/\mathcal{U} \to R$ with $h_2(h_1(\overline{a})) \neq 0$. But this can be achieved as in the proof of Theorem 18. We apply h_1 and h_2 consecutively to \overline{a} and get $h_2 \circ h_1(\overline{a}) \neq 0$.

5. κ is a weakly compact cardinal

We aim to prove that every κ -torsionless R-module of cardinality κ is torsionless, whenever $|R| < \kappa$ and κ is weakly compact. To start with, we recall several notions for the benefit of the reader. We begin with the notion of elementary substructure.

Let $\mathfrak A$ and $\mathfrak B$ be $\mathcal L$ -structures for some first order language $\mathcal L$. We say that $\mathfrak A$ is an elementary substructure of $\mathfrak B$, in symbols $\mathfrak A \prec \mathfrak B$, if $\mathfrak A$ is a substructure of $\mathfrak B$ and for any $\mathcal L$ -formula $\varphi(v_0,\ldots,v_n)$ and any elements x_0,\ldots,x_n from the universe of $\mathfrak A$ the following condition holds

$$\mathfrak{A} \models \varphi[x_0, \dots, x_n] \Leftrightarrow \mathfrak{B} \models \varphi[x_0, \dots, x_n].$$

Recall the definition of ordered pair of sets: if a, b are sets, then

$$(a,b) = \{\{a\}, \{a,b\}\}.$$

We can define the following functions

$$(a,b)_0 = a$$
$$(a,b)_1 = b.$$

Hence,

$$z = (x)_0 \Leftrightarrow \exists y(x = (z, y));$$

in a similar way we can define $z = (x)_1$.

We also require to describe an ordinal. That is, a transitive set which is well ordered by €:

$$Or(x) \Leftrightarrow \forall y \forall z (y \in x \land z \in y \to z \in x) \land$$

$$\forall y \in x \forall z \in x (z = y \lor z \in y \lor y \in z) \land$$

$$\forall z (z \subseteq x \land \neg (z = \emptyset) \to \exists y \in z \forall u \in z (y = u \lor y \in u)),$$

while a limit ordinal is described as:

$$Lim(x) \Leftrightarrow Or(x) \land \forall z \in x \exists y \in x(z < y).$$

To continue, we describe a homomorphism between an R-module N and the ring R. We first observe that being a function is described as:

$$\operatorname{Fun}(f) \Leftrightarrow \forall x \in f \exists y \exists z (x = (y, z) \land ((y_1, z) \in f \land (y_2, z) \in f \rightarrow y_1 = y_2)).$$

As usual we use the notation f(x) = y for $(x, y) \in f$.

We have the following relations associated to the concept of function:

$$\operatorname{dom}(f) = z \Leftrightarrow \operatorname{Fun}(f) \land [\forall x \in z \exists y ((x, y) \in f) \land ((x, y) \in f \to x \in z)],$$

$$\operatorname{ran}(f) = z \Leftrightarrow \operatorname{Fun}(f) \land [\forall y \in z \exists x ((x, y) \in f) \land ((x, y) \in f \to y \in z)].$$

Our aim now is to describe an R-homomorphism. We suppose that R is a ring and that N is a left R-module.

Let Hom(f, R) be the formula:

$$\begin{aligned} \operatorname{Hom}(f,R,N) \Leftrightarrow & \operatorname{Fun}(f) \wedge \operatorname{dom}(f) = N \wedge \operatorname{ran}(f) \subseteq R \wedge \\ & [\forall \, n_1, n_2 \in N(f(n_1 + n_2) = f(n_1) + f(n_2)) \wedge \\ & \forall \, r \in R \forall \, n \in N(f(rn) = rf(n))]. \end{aligned}$$

Now, let us suppose that M is an R-module of cardinality κ , a regular cardinal. We can enumerate M as

$$M = \{m_{\alpha} : \alpha < \kappa\}.$$

With this we can now define a family of submodules of M in the following way (recall that κ is regular): we define, by transfinite recursion,

$$M_0 = \langle \{m_0\} \rangle,$$
 $M_{\alpha+1} = \langle \{m_{\beta}\} \cup M_{\alpha} \rangle,$
 $M_{\alpha} = \bigcup_{\beta < \alpha} M_{\beta}$ if β is a limit ordinal,

where m_{β} in the second equation is the least element, in our enumeration of M, in $M - M_{\alpha}$.

If $\beta < \alpha$ then M_{β} is a submodule of M_{α} . If M is a κ -torsionless R-module, we know that for each $\alpha < \kappa$ and for each $m \in M_{\alpha}$, $m \neq 0_M$ there is an R-homomorphism $f: M_{\alpha} \to R$ such that $f(m) \neq 0_R$.

We are ready to prove our main result of this section:

Theorem 21. Suppose that κ is a weakly compact cardinal, and that M is a κ -torsionless R-module of cardinality κ , where R is a ring of cardinality less than κ . Then, M is torsionless.

Proof. Without loss of generality we may assume that $R \in V_{\kappa}$, where V_{κ} is the κ -th level in von Neumann's hierarchy, and that $M = V_{\kappa}$. Now consider the following structure in the language $\mathcal{L} = \{\in, T\}$, where T is a unary predicate.

$$W = \langle V_{\kappa}, \in, \{(\alpha, M_{\alpha}) : \alpha < \kappa\} \rangle.$$

Let

$$\overline{M} = \{(\alpha, M_{\alpha}) : \alpha < \kappa\}.$$

Thus, $W \models \overline{M}x$ means that $x \in V_{\kappa}$ and $x \in \overline{M}$, according to W.

The following claims are easily verified:

The second coordinates of the elements of \overline{M} are R-modules:

$$W \models \forall x (\overline{M}x \rightarrow ``(x)_1 \text{ is an } R\text{-module}"$$
 (2)

The first coordinates of the elements of \overline{M} are ordinals:

$$W \models \forall x (\overline{M}x \to Or((x)_0)) \tag{3}$$

If $\alpha < \beta$, then $M_{\alpha} < M_{\beta}$:

$$W \models \forall x \forall y (\overline{M}x \land \overline{M}y \land (x)_0 < (y)_0 \to (x)_1 \le (y)_1) \tag{4}$$

If β is limit, M_{β} is the union of the previous M_{α} :

$$W \models \forall x (\overline{M}x \wedge Lim((x)_0) \rightarrow \\ \forall z \in (x)_1 \exists y (\overline{M}y \wedge (y)_0 < (x)_0 \wedge z \in (y)_1).$$
 (5)

Every ordinal in W enumerates some M_{α} :

$$W \models \forall \alpha \exists x (Or(\alpha) \land \overline{M}x \to (x)_0 = \alpha). \tag{6}$$

Every M_{α} is torsionless:

$$W \models \psi_1, \tag{7}$$

where

$$\psi_1 \equiv \forall \, x \forall \, y (\overline{M}x \land y \in (x)_1 \land y \neq 0_{(x)_1} \rightarrow \exists \, f(\operatorname{Hom}(f, R, (x)_1) \land \neg (f(y) = 0_R))).$$

We now use Keisler's extension property (Theorem 2). Note that $M = \bigcup_{\alpha < \kappa} M_{\alpha}$. We know that there exists $\langle X, \in, N \rangle$ with X transitive, $\kappa \in X$, $N \subseteq X$, $V_{\kappa} \subseteq X$ and

$$\langle V_{\kappa}, \in, \overline{M} \rangle \prec \langle X, \in, N \rangle.$$

Since $\kappa \in X$ we have that $M = M_{\kappa}$, by (5) and (6), because κ is limit. From (7) we conclude that M is torsionless, which is what we wanted to prove.

6. κ is not a weakly compact cardinal

In this section we construct an example of an R-module M of cardinality κ which is κ -torsionless, but not torsionless. For that we require a cardinal κ which is neither weakly compact, nor \aleph_0 -measurable. The reason for κ not to be weakly compact is clear from the result from the previous section. While the reason for it not to be \aleph_0 -measurable will be a consequence of the theorem stated below. We shall use a nice Wald's example ([10]), but we need several additional facts, because the original example works for abelian groups and we will deal with R-modules.

We recall that if $\{M_{\alpha}: \alpha < \lambda\}$ is a family of torsionless R-modules, the cartesian product $M = \prod_{\alpha < \lambda} M_{\alpha}$ is torsionless, so its dual M^* is different from 0 (the 0 homomorphism). However, if $f \in M^*$ is such that $f \upharpoonright \bigoplus_{\alpha < \lambda} M_{\alpha} = 0$, would it be true that f = 0? The following result gives a negative answer to this question, when κ is \aleph_1 -measurable. In fact, we have the answer for $f \upharpoonright \bigoplus_{\alpha < \kappa}^{(\kappa)} M_{\alpha} = 0$, where

$$\bigoplus_{\alpha < \kappa}^{(\kappa)} M_{\alpha} = \left\{ m \in \prod_{\alpha < \kappa} M_{\alpha} : |\{\alpha < \kappa : m(\alpha) \neq 0\}| < \kappa \right\}.$$

To prove our theorem we use an idea of Fuchs ([4]).

Theorem 22. Let $\{M_{\alpha} : \alpha < \kappa\}$ be a family of torsionless R-modules, where κ is a cardinal that is \aleph_1 -measurable and such that $|R| < \kappa$. Then, there is an R-homomorphism $f : \prod_{\alpha < \kappa} M_{\alpha} \to R$ such that $f \upharpoonright \bigoplus_{\alpha < \kappa}^{(\kappa)} M_{\alpha} = 0$ but $f \neq 0$. In particular, $M^* \neq 0$.

Proof. Every factor M_{α} is torsionless, so we can choose an R-homomorphism $f_{\alpha}:M_{\alpha}\to R$ that is not the zero homomorphism. Since κ is \aleph_0 -measurable, there exists an \aleph_1 -complete ultrafilter $\mathfrak U$ in κ .

We enumerate R as $R = \{r_{\alpha} : r_{\alpha} < \lambda\}$, where $\lambda = |R|$. We can assume $r_0 = 0$. For $x \in M$ and for each $\alpha < \lambda$ we define

$$U_{r_{\alpha}}^{x} = \{ \nu < \kappa : f_{\nu}(x(\nu)) = r_{\alpha} \}.$$

The sets $U_{r_{\alpha}}^{x}$ form a partition of κ . So, according to Theorem 8 there is $\alpha < \lambda$ such that $U_{r_{\alpha}}^{x} \in \mathcal{U}$. We make $f(x) = r_{\alpha}$. This defines a function $f: M \to R$.

Claim 1. f is an R-homomorphism.

Proof of Claim 1. Let $x, y \in \prod_{\alpha < \kappa} M_{\alpha}$ and suppose that $f(x) = r_{\alpha}$ and $f(y) = r_{\beta}$. Observe that

$$U_{r_{\alpha}}^x \cap U_{r_{\beta}}^y \subseteq U_{r_{\alpha}+r_{\beta}}^{x+y}$$

because if $\nu \in U^x_{r_{\alpha}} \cap U^y_{r_{\beta}}$, we can conclude that $f_{\nu}(x(\nu)) = r_{\alpha}$ and $f_{\nu}(y(\nu)) = r_{\beta}$, so that $f_{\nu}(x(\nu) + y(\nu)) = r_{\alpha} + r_{\beta}$ and, hence, $\nu \in U^{x+y}_{r_{\alpha} + r_{\beta}}$. Then f(x + y) = f(x) + f(y).

Next we shall prove that $f(r_{\alpha}x) = r_{\alpha}f(x)$ for every $r_{\alpha} \in R$ and every $x \in M$. Let $f(x) = r_{\beta}$. It follows that

$$U_{r_{\theta}}^{x} \subseteq U_{r_{\alpha}r_{\theta}}^{r_{\alpha}x},$$

since if $\nu \in U^x_{r_{\beta}}$, we get $f_{\nu}(x(\nu)) = r_{\beta}$, so that $f_{\nu}(r_{\alpha}x(\nu)) = r_{\alpha}f_{\nu}(x(\nu)) = r_{\alpha}r_{\beta}$ and, hence, $\nu \in U^{r_{\alpha}x}_{r_{\alpha}r_{\beta}}$, we obtain that $f(r_{\alpha}x) = r_{\alpha}f(x)$.

Claim 2. $f \upharpoonright \bigoplus_{\alpha \leq \kappa}^{(\kappa)} M_{\alpha} = 0$.

Proof of Claim 2. Let $x \in \bigoplus_{\alpha \le \kappa}^{(\kappa)} M_{\alpha}$. So, the support of x

$$\operatorname{Supp}(x) = \{ \alpha < \kappa : x(\alpha) \neq 0 \},\$$

has cardinality less than κ . Therefore,

$$U_0^x = \{ \nu < \kappa : x(\nu) = 0 \},$$

has cardinality κ . Moreover, its complement has cardinality less than κ , hence it cannot be a member of \mathcal{U} . It follows that $U_0^x \in \mathcal{U}$, so f(x) = 0.

Claim 3. f is not the zero homomorphism.

Proof of Claim 3. We must exhibit an element $x \in M$ such that $f(x) \neq 0$. Now, for each $\alpha < \kappa$ we know that $f_{\alpha} : M_{\alpha} \to R$ is not zero, so there is an element $x(\alpha) \in M_{\alpha}$, with $x(\alpha) \neq 0$. Note that, with any of these elements $x \in M$,

$$U_0^x = \{ \nu < \kappa : x(\nu) = 0 \}$$

is empty. So $f(x) \neq 0$, as required.

From these three claims the theorem follows at once.

Now we turn to construct the announced example at the beginning of this section. Consider a not weakly compact cardinal κ . According to Theorem 7, κ is not measurable. We will construct an example of an R-module of cardinality κ which is κ -torsionless but $U^* = 0$. Invoking previous results we can assume that κ is not \aleph_0 -measurable.

We will use the following filter: let $\mathcal{B} = \{X \subseteq \kappa : |\kappa - X| < \kappa\}$. It is clear that \mathcal{B} has the finite intersection property. So it generates a filter \mathcal{F} .

Theorem 23. Let $\{M_{\alpha} : \alpha < \kappa\}$ be a family of κ -torsionless R-modules, where κ is a cardinal and let \mathcal{F} be the filter described above. Then

$$\prod_{\alpha<\kappa} M_{\alpha}/\mathcal{F}$$

is a κ -torsionless R-module.

Proof. Let $M = \prod_{\alpha < \kappa} M_{\alpha}$, $\overline{M} = M/\mathcal{F}$ and let $\pi : M \to \overline{M}$ be the canonical homomorphism. Now let \overline{N} be an R-submodule of \overline{M} of cardinality less than κ and take $\overline{a} \in \overline{N}$, with $\overline{a} \neq \overline{0}$. We will give an R-monomorphism

$$h: \overline{N} \to R^{\kappa}$$
.

Let $f: \overline{N} \to M$ be a function that chooses representatives in M for each $\overline{n} \in \overline{N}$. For $\overline{n}_1, \overline{n}_2 \in \overline{N}$ and $r \in R$, we define

$$A_{\overline{n}_1,\overline{n}_2} = \{ \alpha < \kappa : f(\overline{n}_1 + \overline{n}_2)(\alpha) - f(\overline{n}_1)(\alpha) - f(\overline{n}_2)(\alpha) \neq 0 \}, B_{\overline{n},r} = \{ \alpha < \kappa : rf(\overline{n})(\alpha) - f(r\overline{n})(\alpha) \neq 0 \}.$$

Let $A = \bigcup_{\overline{n}_1,\overline{n}_2 \in \overline{N}} A_{\overline{n}_1,\overline{n}_2}$ and let $B = \bigcup_{r \in R,\overline{n} \in \overline{N}} B_{\overline{n},r}$. Since $|R|,|\overline{N}| < \kappa$, it follows that $|A \cup B| < \kappa$. We let $C = A \cup B$ and define $h : \overline{N} \to M$ by

$$h(\overline{n}) = \begin{cases} f(\overline{n})(\alpha), & \text{if } \alpha \in (\kappa - C) \\ 0, & \text{if } \alpha \in C. \end{cases}$$

Claim 1. h is an R-homomorphism.

Proof of Claim 1. It is easily verified that h is well defined. Let $\overline{n}_1, \overline{n}_2 \in \overline{N}$. We shall show that

$$h(\overline{n}_1 + \overline{n}_2)(\alpha) = h(\overline{n}_1)(\alpha) + h(\overline{n}_2)(\alpha) \tag{8}$$

If $\alpha \in C$, (8) does hold. If $\alpha \in \kappa - C$, then

$$h(\overline{n}_1 + \overline{n}_2)(\alpha) = f(\overline{n}_1 + \overline{n}_2)(\alpha),$$

$$h(\overline{n}_1)(\alpha) = f(\overline{n}_1)(\alpha),$$

$$h(\overline{n}_2) = f(\overline{n}_2)(\alpha),$$

and, since $\alpha \in \kappa - C$,

$$f(\overline{n}_1 + \overline{n}_2)(\alpha) = f(\overline{n}_1)(\alpha) + f(\overline{n}_2)(\alpha).$$

So, (8) is true.

Now let $\overline{n} \in \overline{N}$ and $r \in R$. We must certify that

$$h(r\overline{n})(\alpha) = rh(\overline{n})(\alpha). \tag{9}$$

If $\alpha \in C$, (9) is immediate. If $\alpha \in \kappa - C$,

$$h(r\overline{n})(\alpha) = f(r\overline{n})(\alpha),$$

 $rh(\overline{n})(\alpha) = rf(\overline{n})(\alpha),$

and, since $\alpha \in \kappa - C$, it follows that $f(r\overline{n})(\alpha) = rf(\overline{n})(\alpha)$. Therefore (9) is valid.

Claim 2. h is a monomorphism.

Proof of Claim 2. Let \overline{n}_1 and \overline{n}_2 be two different elements in \overline{N} .

Consider the following subset of κ :

Diff =
$$\{\alpha < \kappa : f(\overline{n}_1)(\alpha) \neq f(\overline{n}_2)(\alpha)\}.$$

This set has cardinality κ . Since we have that $|C| < \kappa$ we can find $\alpha^* \in \text{Diff}-C$, so that $f(\overline{n}_1)(\alpha^*) \neq f(\overline{n}_2)(\alpha^*)$. Hence $h(\overline{n}_1)(\alpha^*) \neq h(\overline{n}_2)(\alpha^*)$, from which we conclude that $h(\overline{n}_1) \neq h(\overline{n}_2)$.

We have given an embedding $h: \overline{N} \to R^{\kappa}$, so \overline{N} is a torsionless R-module.

Let us recall the notion of weak sum:

Definition 24. Let κ and λ be cardinals. We define:

$$\kappa^{\frac{\lambda}{\nu}} = \sum_{\rho < \lambda} \kappa^{\rho},$$

where the sum runs over the cardinals $\rho < \kappa$.

The following is a well known result, but we did not find an appropriate reference.

Recall that μ is a strong limit cardinal if for every cardinal $\lambda < \mu$, $2^{\lambda} < \mu$ holds. It follows that every strong limit cardinal is a limit cardinal.

Theorem 25. Let κ be a cardinal. Then, $\kappa = 2^{\frac{\kappa}{5}}$ if and only if $\kappa = \kappa^{\frac{\kappa}{5}}$ or κ is a strong limit cardinal.

Proof. If $\kappa = \kappa^{\frac{\kappa}{-}}$ or κ is a strong limit cardinal, it is clear that $\kappa = 2^{\frac{\kappa}{-}}$. Conversely, let us suppose that $\kappa = 2^{\frac{\kappa}{-}}$. If κ is regular, then

$$\kappa^{\frac{\kappa}{-}} \leq \left(2^{\frac{\kappa}{-}}\right)^{\frac{\kappa}{-}} = 2^{\frac{\kappa}{-}} = \kappa.$$

We wish to prove that κ is strong limit, assume that κ is singular. If this were not the case, there would be a cardinal $\mu < \kappa$ with $cf(\kappa) \le \mu < \kappa$ and $\kappa \le 2^{\mu}$. In which case, $2^{\mu} = \kappa$ and

$$\kappa < \kappa^{cf(\kappa)} \le \kappa^{\mu} = (2^{\mu})^{\mu} = 2^{\mu} = \kappa.$$

V

We will use as a ring R a slender ring. This notion is due to J. Loś.

Definition 26. An R-module M is slender if for every R-homomorphism $f: R^{\aleph_0} \to M$ it satisfies the condition that $f(m_l(i)) = 0$ for every $l \in \mathbb{N}$ except for finitely many l's, where

$$m_l(i) = \begin{cases} 0, & \text{if} \quad l \neq i \\ 1, & \text{if} \quad l = i. \end{cases}$$

As examples of slender R-modules we have \mathbb{Z} and every countable integer domain that is not a field (see [8]). Even more can be said: If R is a pid, R is slender whenever R is not a complete valuation domain, which follows from [5, Lemma 6.6, p.555].

In order to build our example we require the following result which can be obtained from [2] together with [1].

Theorem 27. Let M be a slender R-module and let κ be a cardinal that is not \aleph_0 -measurable. For every family $\{M_\alpha : \alpha < \kappa\}$ and for every $f : \prod_{\alpha < \kappa} M_\alpha \to M$, if $f \upharpoonright \bigoplus_{\alpha < \kappa} M_\alpha = 0$, then f = 0.

As we already mentioned the example that we develop here originated in [10]. However, me make it more general, since it shall work for a broader class of rings not only for \mathbb{Z} .

Example 28. There exists an R-module M of cardinality κ , where κ is neither weakly compact nor \aleph_0 -measurable but weakly inaccessible, such that M is κ -torsionless but not torsionless.

Recall that a weakly compact cardinal must satisfy the arrow relation:

$$\kappa \longrightarrow (\kappa)_2^2$$

(Theorem 4), so in our case, given that κ is not weakly compact, there must be a map $p: [\kappa]^2 \to 2$ for which there is no subset of κ of cardinality κ that is homogeneous with respect to p.

Let $\{M_{\alpha}: \alpha < \kappa\}$ be an arbitrary family of torsionless R-modules with $|M_{\alpha}| \leq \kappa$ for every $\alpha < \kappa$, where R is a slender ring (viewed as an R-module) and such that $|\{\alpha < \kappa: |M_{\alpha}| = \kappa\}| = \kappa$. We form the product

$$M=\prod_{\alpha<\kappa}M_{\alpha}.$$

Let \mathcal{F} be the filter in κ described above, and let

$$\overline{M} = M/\mathfrak{F}$$

be the reduced product of M module \mathcal{F} . The canonical quotient function is denoted by π , that is to say, $\pi:M\to\overline{M}$. We will build an R-module L such that it is a submodule of \overline{M} , with $|L|=\kappa$, and such that L is κ -torsionless, but $L^*=0$.

For $\alpha < \kappa$ and $i \in \{0, 1\}$, let

$$A_{\alpha}^{i} = \{\beta < \kappa : p(\{\alpha, \beta\}) = i\}.$$

If $\mu < \kappa$ and $f : \mu \to \{0, 1\}$, set

$$N_f = \bigcap_{\alpha < \mu} A_{\alpha}^{f(\alpha)}.$$

If $f: \mu \to \{0,1\}$ and $g: \nu \to \{0,1\}$, $f \subseteq g$ occurs when g extends f. We say that f and g are noncomparable when $f \not\subseteq g$ and $g \not\subseteq f$.

Claim 1. If $f \subseteq g$, then $N_g \subseteq N_f$.

Proof of Claim 1. Let $\beta \in N_g$, then $\beta \in A_{\alpha}^{g(\alpha)}$ for every $\alpha \in \text{dom}(g)$. We must show that $\beta \in A_{\alpha}^{f(\alpha)}$ for any $\alpha \in \text{dom}(f)$. If $g(\gamma) = i$, then $f(\gamma) = i$, since $g(\alpha, \beta) = i$. Since $A_{\alpha}^{f(\alpha)} = A_{\alpha}^{g(\alpha)}$, we have that $\beta \in A_{\alpha}^{f(\alpha)}$. Therefore, $\beta \in N_f$.

Claim 2. If f, g are noncomparable, then $N_f \cap N_g = \emptyset$.

Proof of Claim 2. Let us assume, to get a contradiction, that $\gamma \in N_f \cap N_g$, then $\gamma \in A_{\alpha}^{f(\alpha)}$. That is, $p(\{\alpha, \gamma\}) = f(\alpha)$, for every $\alpha \in \text{dom}(f)$ and for every $\gamma \in A_{\alpha}^{g(\alpha)}$. Hence, $p(\{\alpha, \gamma\}) = g(\alpha)$ for every $\alpha \in \text{dom}(g)$. Suppose that $\text{dom}(f) \leq \text{dom}(g)$. Thus $f(\alpha) = g(\alpha)$ for any $\alpha \in \text{dom}(f)$, so $f \subseteq g$, which is a contradiction.

Claim 3. $N_f \cap \mu = \emptyset$ if $\mu = \text{dom}(f)$.

Proof of Claim 3. Otherwise, there would be a $\gamma \in \mu \cap N_f$. That is, we could calculate $p(\{\gamma, \gamma\}) = p(\{\gamma\})$, which is not possible.

We will use the following notation: if $B \subseteq \kappa$, we define the unitary vector $u_B \in M$ by:

 $u_B(\alpha) = \begin{cases} 1, & \text{if } \alpha \in B \\ 0, & \text{another case.} \end{cases}$

We write u_f to mean u_{N_f} .

Given $f: \mu \to \kappa$ and $\nu \in \mu$, we define the function $f_{\nu}: \nu + 1 \to \{0,1\}$ by

$$f_{\nu}(\alpha) = \begin{cases} f(\alpha), & \text{si} \quad \alpha < \nu \\ 0, & \text{si} \quad \alpha = \nu \land f(\nu) = 1 \\ 1, & \text{si} \quad \alpha = \nu \land f(\nu) = 0. \end{cases}$$

We let $f_{\mu} = f$. By the definition of these functions it is clear that the $N_{f_{\nu}}$ are pairwise disjoint for any $\nu \in \mu$. We now define a homomorphism $F_f : \prod_{\alpha < \mu} M_{\alpha} \to \prod_{\alpha < \kappa} M_{\alpha}$ by

$$F_f(x) = \sum_{\nu \in \mu+1} x(\nu) u_{f_{\nu}}.$$

The composition $F_f \circ \pi$ is an R-homomorphism $\overline{F}_f : \prod_{\alpha \leq \mu} M_{\alpha} \to \overline{M}$. Claim 4. Let $\lambda \in \mu$, then

$$N_{f \uparrow \lambda} = \bigcup_{\nu \in [\lambda, \mu+1)} N_{f_{\nu}} \cup (N_{f \uparrow \lambda} \cap (\mu - \lambda)), \qquad (10)$$

where $\nu \in [\lambda, \mu + 1)$ means that the union runs over the ordinals $\nu \ge \lambda$ and $\nu < \mu + 1$.

Proof of Claim 4. Since $\nu \geq \lambda$, we have that $f \upharpoonright \lambda \subseteq f_{\nu}$ and, hence, that $N_{f_{\nu}} \subseteq N_{f \upharpoonright \lambda}$. Consequently, the right hand side of (10) is contained in the left hand side.

Now, let $\alpha \in N_{f \mid \lambda}$. First recall that, by definition,

$$N_{f_\mu} = N_f = \bigcap_{\nu \in \mu} A_\nu^{f(\nu)}.$$

Let us suppose that $\alpha \notin N_{f_{\mu}}$, then there is $\nu \in \mu$ (we can choose the least possible) so that $\alpha \notin A_{\nu}^{f(\nu)}$. By definition of f_{ν} and from the fact that $\kappa = A_{\nu}^{0} \cup \{\nu\} \cup A_{\nu}^{1}$, it follows that $\alpha = \nu$ or $\alpha \in N_{f_{\nu}}$. Given that $\alpha \notin A_{\nu}^{f(\nu)}$, $\alpha \in A_{\nu}^{f(\nu)}$ (if $\alpha \neq \nu$). If $\alpha = \nu$, we have that $\nu < \mu, \nu > \lambda$. So, $\alpha \in N_{f \uparrow \lambda} \cap (\mu - \lambda)$. Claim 5.

$$\overline{F}_f\left(\sum_{\nu\in[\lambda,\mu+1)}u_\nu\right)=\overline{u}_{f\mid\lambda}.$$

Proof of Claim 5. Note that $\mu \in \kappa$, therefore $N_{f \uparrow \lambda} \cap (\mu - \lambda)$ has cardinality less than κ . Then, by construction of \overline{M} and by the definition of \overline{F}_f , we get

$$\overline{F}_f\left(\sum_{\nu\in[\lambda,\mu+1)}u_\nu\right)=\overline{\sum_{\nu\in[\lambda,\mu+1)}u_{f_\nu}}=\overline{u}_{f\uparrow\lambda},$$

where $\overline{u}_{f \uparrow \lambda}$ is the class of $u_{f \uparrow \lambda}$ in \overline{M} .

Given the function $f: \mu \to \{0,1\}$, we develope the functions f^0 and f^1 :

$$f^{0} = f \cup \{(\mu, 0)\}\$$

$$f^{1} = f \cup \{(\mu, 1)\},\$$

so that $f^1
subseteq \mu = f^0
subseteq \mu = f$ and $f^i(\mu) = i$ for $i \in \{0, 1\}$. We already mentioned that $\kappa = A^0_\mu \cup \{\mu\} \cup A^1_\mu$ thus $N_f = N_{f^0} \cup (N_f \cap \{\mu\}) \cup N_{f^1}$. Then,

$$\overline{u}_f = \overline{u}_{f^0} + \overline{u}_{f^1}$$

in \overline{M} .

We now define our R-submodule $L < \overline{M}$ as the R-submodule generated by all the images of the homomorphisms \overline{F}_f :

$$L = \left\langle \sum_{f} Im(\overline{F}_{f}) \right\rangle,$$

where f varies over all the functions $f: \mu \to \{0,1\}$ for $\mu \in \kappa$. For each κ we have $2^{|\mu|}$ functions $f: \mu \to 2$. So, we have $2^{\frac{\kappa}{2}}$ functions $f: \nu \to \{0,1\}$ for some $\nu < \kappa$.

Notice that

$$\left|\mathrm{Im}(\overline{F}_f)\right| \leq \left|\mathrm{dom}(\overline{F}_f)\right| = \left|\prod_{\alpha \leq \mu} M_{\alpha}\right| \leq \kappa^{\mu} \leq \kappa^{\frac{\kappa}{\nu}} = \kappa.$$

Therefore,

$$|L| \leq 2^{\frac{\kappa}{-}} \sum_{\mu < \kappa} \kappa^{\mu} = \kappa^{\frac{\kappa}{-}} = \kappa.$$

By hypothesis, we have at least κ R-modules M_{α} of cardinality κ . This, together with the definition of the R-homomorphisms \overline{F}_f , gives $|L| \geq \kappa$. We conclude that $|L| = \kappa$.

Note that L is a κ -torsionless R-module, according to Theorem 23. So, it only remains to be proved that L is not torsionless. In fact, we will prove that $L^* = 0$. That is, that there are no homomorphisms, other than the zero

homomorphism, from L to R. So, toward a contradiction suppose that $f \in L^*$ and that f is not the zero homomorphism.

We construct a function $h: \kappa \to \{0,1\}$ such that for some $\mu^* \in \kappa$

$$f(\overline{u}_{h \mid \mu^*}) \neq 0,$$

for every $\mu \ge \mu^*$, with $\mu \in \kappa$.

By hypothesis there must be a $\mu \in \kappa$ and some $g: \mu \to \{0,1\}$ such that

$$h[Im(\overline{F}_q)] \neq 0.$$

Assume that $h(\overline{u}_{g_{\nu}}) = 0$ for every $\nu \in \mu + 1$. Consider the homomorphism $h \circ \overline{F}_g : \prod_{\alpha \leq \mu} M_{\alpha} \to R$.

Claim 6. $h \circ \overline{F}_g(u_\nu) = h(\overline{e}_{g_\nu}) = 0$ for every $\nu \in \mu + 1$.

Proof of Claim 6. Recall that all the coordinates of u_{ν} are zero except for the ν -th one which is 1. Therefore, in

$$F_g(u_\nu) = \sum_{\gamma \in \mu+1} u_\nu(\gamma) u_{g_\gamma}$$

only $u_{\nu}(\nu)=1$ survives and, hence, $F_g(u_{\nu})=u_{g_{\nu}}$, from which it follows that $\overline{F}_g(u_{\nu})=\overline{u}_{g_{\nu}}$ and $h\circ \overline{F}_g(u_{\nu})=h(\overline{u}_{\nu})=0$ for every $\nu\in \mu+1$.

Given that $\mu+1<\kappa$, we have that $|\mu+1|<\kappa$. In order to apply Theorem 27 we must verify that

$$h\circ \overline{F}_g \upharpoonright \bigoplus_{\nu<\mu+1} M_{\nu} = 0.$$

Let $z \in \bigoplus_{\nu < \mu+1} M_{\nu}$, then $z = z_1 u_{\nu_1} + \cdots + z_n u_{\nu_n}$, for certain $z_i \in R$ and $\nu_i < \mu + 1$. In this case

$$h \circ \overline{F}_g(z) = z_1 h \circ \overline{F}_g(u_{\nu_1}) + \dots + z_n h \circ \overline{F}_g(u_{\nu_n})$$

=0.

So, by theorem 27 $(\mu+1<\kappa)$, $h\circ \overline{F}_g=0$ holds. This contradicts the fact that $h[Im(\overline{F}_g)]\neq 0$. We can, thus, conclude that $h(\overline{u}_{g_{\nu}})\neq 0$ for some $\nu\in \mu+1$. With this ν we make $\mu^*=\mathrm{dom}(g_{\nu})$ and $h\upharpoonright \mu^*=g_{\nu}$.

Let us suppose that $\mu > \mu^*$ and that $k = h \upharpoonright \mu$ is already defined. Under these conditions,

$$g(\overline{u}_k) \neq 0$$
,

since $\overline{u}_k = \overline{u}_{k^0} + \overline{u}_{k^1}$, there is an $i \in \{0,1\}$ such that $g(\overline{u}_{k^i}) \neq 0$. We make $h(\mu) = i$. That is,

$$h \restriction \mu + 1 = k^i.$$

Suppose $k = h \upharpoonright \mu$ is already defined and let μ be a limit ordinal. We know that

$$g(\overline{u}_{h \uparrow \nu}) \neq 0, \quad \forall \nu < \mu, \mu^* \leq \nu.$$

We must show that

$$g(\overline{u}_{h\uparrow\mu})\neq 0.$$

So, let us consider the R-homomorphism $g \circ \overline{F}_k : \prod_{\alpha < \mu+1} M_{\alpha} \to R$. Since R is slender, almost all the u_{ν} ($\nu \in \mu + 1$) are mapped into zero under this R-homomorphism. Consequently, there is a $\mu_1 \in \mu$ such that

$$g \circ \overline{F}_k(u_{\nu}) = 0 \quad \forall \nu \ge \mu_1, \nu < \kappa.$$

Moreover, if $g \circ \overline{F}_k(u_\mu) = 0$, from

$$\overline{F}_k \left(\sum_{\mu_1 \in [\nu, \mu+1)} u_{\nu} \right) = \overline{u}_{h \restriction \mu_1}$$

(Claim 5), together with Theorem 27, it follows that

$$g(\overline{u}_{h \uparrow \mu_1}) = (g \circ \overline{F}_k) \left(\sum_{\mu_1 \in [\nu, \mu+1)} u_{\nu} \right) = 0,$$

which contradicts the hypothesis that $g(\overline{u}_{h|\nu}) \neq 0$ for every $\nu \geq \mu^*$, with $\nu \in \mu$. Therefore one gets, just as before,

$$0 \neq g \circ \overline{F}_k(u_\mu) = g(\overline{u}_{k_\mu}).$$

But, $k_{\mu}=k=h\upharpoonright \mu$ and, thus, $g(\overline{u}_{h\upharpoonright \mu})\neq 0$. Notice that if $X\subseteq \kappa$, then $\overline{u}_X\neq 0$ if and only if $|X|=\kappa$. Otherwise, if $|X|<\kappa$ then \overline{u}_X is in the class of zero. From this it follows that for every $\mu\in\kappa$, $|N_{h\upharpoonright \mu}|=\kappa$: if $g(\overline{u}_{h\upharpoonright \mu})\neq 0$, then $\overline{u}_{h\upharpoonright \mu}\neq 0$ because g is an R-homomorphism. Therefore,

$$|N_{h\dagger\mu}|=\kappa.$$

To finish, we describe an injective function $b: \kappa \to \kappa$ having the property that

$$b(\mu) = \bigcap_{\nu \in \mu} A_{b(\nu)}^{h(b(\nu))},$$

for each $\mu \in \kappa$. Suppose $b \upharpoonright \mu$ is already defined and let

$$\rho = \sup\{b(\nu) : \nu \in \mu\}.$$

Then, $\rho < \kappa$ since κ is regular.

We can choose $b(\mu) \in N_{h \upharpoonright \rho} - (\rho + 1)$ since we know that $|N_{h \upharpoonright \mu}| = \kappa$ for every $\mu \in \kappa$.

Claim 7.

$$N_{h \uparrow \rho} - (\rho + 1) \subseteq \bigcap_{\nu \in \mu} A_{b(\nu)}^{h(b(\nu))}.$$

Proof of Claim 7. Let $\xi \in N_{h \upharpoonright \rho} - (\rho + 1)$, then $\xi \in N_{h \upharpoonright \rho}$ and $\xi > \rho$; besides, $\xi \in A_{\eta}^{h(\eta)}$ for every $\eta \in \rho$. We must show that $\xi \in A_{b(\nu)}^{h(b(\nu))}$ for every $\nu \in \mu$. Note that $b \upharpoonright \mu : \mu \to \rho$ is injective. Hence,

$$\xi \in \bigcap_{\nu \in \mu} A_{b(\nu)}^{h(b(\nu))}.$$

We are now able to define a subset $H \subseteq \kappa$ of cardinality κ , homogeneous with respect to p. We choose $i \in \{0,1\}$ such that

$$\left|(h\circ b)^{-1}(i)\right|=\kappa.$$

Let $H = b((h \circ b)^{-1}(i))$. In this situation $|H| = \kappa$ and for any $\nu, \mu \in H$, $\nu \neq \mu$ there are $\xi, \zeta \in (h \circ b)^{-1}(i)$ such that $b(\xi) = \nu$ and $b(\zeta) = \mu$. Without loss of generality we can assume $\xi < \zeta$ and get

$$b(\zeta)\in A^{h(b(\xi))}_{b(\xi)}=A^i_{b(\xi)};$$

this yields $p(\{b(\zeta), b(\xi)\}) = i$ for every $\xi, \zeta \in (h \circ b)^{-1}(i)$. Therefore, H is homogeneous of cardinality κ for p, which is a contradiction. We conclude that g = 0 and $L^* = 0$.

To finish we mention some open problems.

Problem 29. Under V = L, can we take κ Mahlo instead of weakly compact in Theorem 21?

Problem 30. Does there exist an R-module M which is κ -torsionless but not torsionless and with $M^* \neq 0$?

Problem 31. An R-module M is locally projective if for each element $m \in M$, there exist $x_1, \ldots, x_n \in M$ and $f_1, \ldots, f_n \in M^*$ such that $m = \sum_j [x_j, f_j] m$, where $[m, f] = mf(\cdot)$ (for more on locally projective modules see [11]). It is easy to see that every locally projective module is torsionless. Is there an example of a torsionless R-module that is not locally projective?

Problem 32. Is it possible to extend example 28 to non-slender rings?

References

- [1] K. Eda, On a boolean power of a torsion free abelian group, J. Algebra 82 (1983), 84-93.
- [2] _____, A boolean power and a direct product of abelian group, Tsukuba J. Math. 11 (1987), 353-360.
- [3] K. Eda and Y. Abe, Compact cardinals and abelian groups, Tsukuba J. Math. 11 (1987), 353-360.
- [4] L. Fuchs, Infinite abelian groups, vol. II, Academic Press, New York, 1973.
- [5] L. Fuchs and L. Salce, Modules over non-noetherian domains, Amer. Math. Soc., New York, 1954.
- [6] A. Kanamori, *The higher infinite*, second ed., Springer-Verlag, New York, 2003.
- [7] Y. T. Lam, Lectures on modules and rings, Springer-Verlag, New York, 1999.
- [8] R. Nunke, Slender groups, Acta Sci. Math. (Szeged) 23 (1962), 67-73.
- [9] B. Wald, Martinaxiom und die beschreibung gewisser homomorphismen in der theorie der ℵ₁-freien abelschen gruppen, Manuscripta Math. 42, 297-309.
- [10] _____, On the groups Q_{κ} , pp. 229–240, Gordon & Breach, New York.
- [11] B. Zimmermann-Huisgen, Pure submodules of direct products of free modules, Math. Ann. 224 (1976), 233-245.

(Recibido en agosto de 2008. Aceptado en junio de 2009)

Posgrado en Dinámica No lineal y Sistemas Complejos Universidad Autónoma de la Ciudad de México San Lorenzo 291, Benito Juarez, CP 03100, D.F., México e-mail: juan_nido@hotmail.com

> Departamento de Ciencias Básicas UPIITA Instituto Politécnico Nacional

Av. IPN 2580, Col. La Laguna Ticomán, Gustavo A. Madero, D. F. e-mail: pmendozai@ipn.mx

DEPARTAMENTO DE MATEMÁTICAS
UNIVERSIDAD AUTÓNOMA METROPOLITANA IZTAPALAPA
IZTAPALAPA, D.F., CP 09340, MÉXICO
e-mail: lmvs@xanum.uam.mx

