Strongly nonlinear elliptic unilateral problems without sign condition and with free obstacle in Musielak-Orlicz spaces

Abdeslam Talha1, Mohamed Saad Bouh Elemine Vall2

1Univ. Hassan I, Settat, Morocco
2University of Nouakchott Al Aasriya, Nouakchott, Mauritania

Abstract. In this paper, we prove the existence of solutions to an elliptic problem containing two lower order terms, the first nonlinear term satisfying the growth conditions and without sign conditions and the second is a continuous function on \mathbb{R}.

Key words and phrases. Poincaré inequality, Musielak-Orlicz-Sobolev Spaces, Unilateral problems, Measurable obstacle, Lower order term.

2020 Mathematics Subject Classification. 46E35, 35K15, 35K20, 35K60.

1. Introduction

In the present paper, we deal with an existence result for a nonlinear elliptic unilateral problems associated to the following equation:

$$A(u) - \text{div} (\Phi (u)) + g(x, u, \nabla u) = f \quad \text{in} \quad \Omega,$$ \hspace{0.5cm} (1)
where Ω is a bounded Lipchitz open subset of $\mathbb{R}^N (N \geq 2)$ which satisfies the segment property and $A(u) = -\text{div} \, a(x, u, \nabla u)$ is a Leray-Lions operator defined on $A : D(A) \subset W^{1}_0 \rightarrow W^{-1}L_c(\Omega)$ where φ and ψ are two complementary Musielak-Orlicz functions. The lower order term Φ is a continuous function on \mathbb{R}, g is a nonlinearity with the following natural growth condition:

$$|g(x, s, \xi)| \leq b(|s|)\left(c(x) + \varphi(x, |\xi|)\right)$$ \hspace{1cm} (2)

and which satisfies the classical sign condition $g(x, s, \xi)s \geq 0$, and the right hand side f is assumed to belong to $L^1(\Omega)$.

On Orlicz spaces and in the variational case, it is well known that Gossez and Mustonen solved in [15] the following obstacle problem:

$$\left\{ \begin{array}{l}
u \in K_{\phi}, \\
\langle A(u), u - v \rangle + \int_{\Omega} g(x, u)(u - v) \, dx \leq \int_{\Omega} f(u - v) \, dx, \\
\text{for all } v \in K_{\phi} \cap L^\infty(\Omega),
\end{array} \right. \hspace{1cm} (3)$$

with $f \in L^1(\Omega)$ and K_{ϕ} is a convex subset in $W^{1}_0 L_M(\Omega)$ given by $K_{\phi} = \{v \in W^{1}_0 L_M(\Omega) : v \geq \phi \text{ a.e in } \Omega\}$, with the obstacle ϕ is a measurable function satisfying some regularity condition. An existence result has been proved in [1] by Aharouch, Benkirane and Rhoudaf where the non-linearity g depend on x, u and ∇u and without assuming the Δ_2-condition on the N-function and also in [2] the authors were studied the problem (1) in the case where the non-linearity g depends only on x and u under the restriction that the N-function satisfies the Δ_2-condition.

In the framework of variable exponent Sobolev spaces, Azroul, Redwane and Yazough in [4] have shown the existence of solutions for the unilateral problem associated to (1) where $\Phi \equiv 0$ and the second member f is a integrable function, for more results in this topic see [5, 19].

In the setting of Musielak-Orlicz spaces and in the case where $\Phi \equiv 0$, Benkirane and Ait Khellou [20] proved the existence of solutions for the obstacle problem (1), they generalized the work of Gossez and Mustonen in [15].

The study of the nonlinear partial differential equations in this type of spaces is strongly motivated by numerous phenomena of physics, namely the problems related to non-Newtonian fluids of strongly inhomogeneous behavior with a high ability of increasing their viscosity under a different stimulus, like the shear rate, magnetic or electric field. The generalized Orlicz (Musielak-Orlicz) spaces are of interest not only as the natural generalization of these important examples, but also in their own right. They have appeared in many problems in PDEs and the calculus of variations [3, 12] and have applications to image processing [11, 18] and fluid dynamics [16, 17].
Our purpose in this paper, then, is to study the strongly nonlinear unilateral problems associated to the equation (1) but without assuming any sign condition and any regularity on the obstacle. More precisely, we prove the existence of solutions for the following unilateral problem:

\[
\begin{cases}
u \geq \Psi \text{ a.e. in } \Omega, \\ T_k(u - v) \in W^1_0L_\varphi(\Omega), \\ g(x, u, \nabla u) \in L^1(\Omega), \\ + \int_\Omega g(x, u, \nabla u)T_k(u - v) \, dx \leq \int_\Omega fT_k(u - v) \, dx,
\end{cases}
\]

for all \(v \in K_\Psi \cap L^\infty(\Omega), \forall k \geq 0. \)

where \(f \in L^1(\Omega) \) and \(K_\Psi = \{ u \in W^1_0L_\varphi(\Omega) : u \geq \Psi \text{ a.e. in } \Omega \} \), with \(\Psi \) a measurable function on \(\Omega \).

To overcome this difficulty (due to the elimination of the sign condition) in the present paper, we modify the condition (2) by the following one

\[
|g(x, s, \xi)| \leq c(x) + h(s)\varphi(x, |\xi|),
\]

the model problem is to consider

\[
g(x, u, \nabla u) = c(x) + |\sin u|e^{-u^2}\varphi(x, |\nabla u|),
\]

where \(c(x) \in L^1(\Omega) \).

Further works for the unilateral problem corresponding to (1) in the \(L^p \) case can be found in [10, 9, 22, 23].

This research is divided into several parts: In Section 2, we recall some well-known preliminaries, properties and results of Orlicz-Sobolev spaces. In Section 2.3, we prepare some auxiliary results to prove our theorem. In the final Section 3, we make precise all the assumptions on \(a(\cdot), \Phi, g \) and \(f \), we also give the main result of this paper (Theorem 3.1) concerning the existence of solutions.

2. Preliminaries

2.1. Musielak-Orlicz function:

Let \(\Omega \) be an open set in \(\mathbb{R}^N \) and let \(\varphi \) be a real-valued function defined in \(\Omega \times \mathbb{R}^+ \) and satisfying the following conditions:

(a) \(\varphi(x, \cdot) \) is an N-function for all \(x \in \Omega \) (i.e. convex, strictly increasing, continuous, \(\varphi(x, 0) = 0, \varphi(x, t) > 0 \), for all \(t > 0, \lim_{t \to 0} \sup_{x \in \Omega} \frac{\varphi(x, t)}{t} = 0 \) and

\[
\lim_{t \to \infty} \inf_{x \in \Omega} \frac{\varphi(x, t)}{t} = \infty,
\]

(b) \(\varphi(\cdot, t) \) is a measurable function.
The function φ is called a Musielak–Orlicz function.

For a Musielak-orlicz function φ we put $\varphi_x(t) = \varphi(x, t)$ and we associate its nonnegative reciprocal function φ^{-1}_x, with respect to t, that is

$$\varphi^{-1}_x(\varphi(x, t)) = \varphi(x, \varphi^{-1}_x(t)) = t.$$

The Musielak-orlicz function φ is said to satisfy the Δ_2-condition if for some $k > 0$, and a non negative function h, integrable in Ω, we have

$$\varphi(x, 2t) \leq k \varphi(x, t) + h(x) \text{ for all } x \in \Omega \text{ and } t \geq 0. \quad (4)$$

When (4) holds only for $t \geq t_0 > 0$, then φ is said to satisfy the Δ_2-condition near infinity.

Let γ and φ be two Musielak-orlicz functions, we say that $\gamma \prec \varphi$ near infinity (resp. globally) if there exist two positive constants c and t_0 such that for almost all $x \in \Omega$

$$\gamma(x, t) \leq \varphi(x, ct) \text{ for all } t \geq t_0, \quad \text{(resp. for all } t \geq 0 \text{ i.e. } t_0 = 0).$$

We say that γ grows essentially less rapidly than φ at 0 (resp. near infinity) and we write $\gamma \prec \varphi$ if for every positive constant c we have

$$\lim_{t \to 0} \left(\sup_{x \in \Omega} \frac{\gamma(x, ct)}{\varphi(x, t)} \right) = 0, \quad \text{(resp. } \lim_{t \to \infty} \left(\sup_{x \in \Omega} \frac{\gamma(x, ct)}{\varphi(x, t)} \right) = 0).$$

Remark 2.1. [8] If $\gamma \prec \varphi$ near infinity, then $\forall \varepsilon > 0$ there exist $k(\varepsilon) > 0$ such that for almost all $x \in \Omega$ we have

$$\gamma(x, t) \leq k(\varepsilon) \varphi(x, \varepsilon t), \quad \text{for all } t \geq 0. \quad (5)$$

2.2. Musielak-Orlicz space:

For a Musielak-Orlicz function φ and a measurable function $u : \Omega \to \mathbb{R}$, we define the functional

$$\rho_{\varphi, \Omega}(u) = \int_{\Omega} \varphi(x, |u(x)|) \, dx.$$

The set $K_\varphi(\Omega) = \left\{ u : \Omega \to \mathbb{R} \text{ measurable } / \rho_{\varphi, \Omega}(u) < \infty \right\}$ is called the Musielak-Orlicz class (or generalized Orlicz class). The Musielak-Orlicz space (the generalized Orlicz spaces) $L_\varphi(\Omega)$ is the vector space generated by $K_\varphi(\Omega)$, that is, $L_\varphi(\Omega)$ is the smallest linear space containing the set $K_\varphi(\Omega)$. Equivalently

$$L_\varphi(\Omega) = \left\{ u : \Omega \to \mathbb{R} \text{ measurable } / \rho_{\varphi, \Omega}(\frac{u}{\lambda}) < \infty, \text{ for some } \lambda > 0 \right\}.$$
For a Musielak-Orlicz function \(\varphi \) we put:
\[
\psi(x, s) = \sup_{t \geq 0} \{ st - \varphi(x, t) \},
\]
\(\psi \) is the Musielak-Orlicz function complementary to \(\varphi \) (or conjugate of \(\varphi \)) in the sense of Young with respect to the variable \(s \).

In the space \(L_\varphi(\Omega) \) we define the following two norms:
\[
\| u \|_{\varphi, \Omega} = \inf \{ \lambda > 0 / \int_\Omega \varphi\left(x, \frac{|u(x)|}{\lambda} \right) \, dx \leq 1 \},
\]
which is called the Luxemburg norm and the so-called Orlicz norm by
\[
\| u \|_{\psi, \Omega} = \sup_{\| v \|_{\psi} \leq 1} \int_\Omega |u(x)v(x)| \, dx,
\]
where \(\psi \) is the Musielak Orlicz function complementary to \(\varphi \). These two norms are equivalent [21].

We will also use the space \(E_\varphi(\Omega) \) defined by
\[
E_\varphi(\Omega) = \{ u : \Omega \rightarrow \mathbb{R} \text{ measurable} / \rho_{\varphi, \Omega}\left(\frac{u}{\lambda} \right) < \infty, \text{ for all } \lambda > 0 \}.
\]
A Musielak function \(\varphi \) is called locally integrable on \(\Omega \) if \(\rho_{\varphi}(t\chi_E) < \infty \) for all \(t > 0 \) and all measurable \(E \subset \Omega \) with \(\text{meas}(E) < \infty \).

Let \(\varphi \) a Musielak function which is locally integrable. Then \(E_\varphi(\Omega) \) is separable [21].

We say that sequence of functions \(u_n \in L_\varphi(\Omega) \) is modular convergent to \(u \in L_\varphi(\Omega) \) if there exists a constant \(\lambda > 0 \) such that
\[
\lim_{n \to \infty} \rho_{\varphi, \Omega}\left(\frac{u_n - u}{\lambda} \right) = 0.
\]
For any fixed nonnegative integer \(m \) we define
\[
W^m L_\varphi(\Omega) = \left\{ u \in L_\varphi(\Omega) : \forall |\alpha| \leq m, \, D^\alpha u \in L_\varphi(\Omega) \right\}
\]
and
\[
W^m E_\varphi(\Omega) = \left\{ u \in E_\varphi(\Omega) : \forall |\alpha| \leq m, \, D^\alpha u \in E_\varphi(\Omega) \right\}
\]
where \(\alpha = (\alpha_1, \ldots, \alpha_n) \) with nonnegative integers \(\alpha_i, |\alpha| = |\alpha_1| + \cdots + |\alpha_n| \) and \(D^\alpha u \) denote the distributional derivatives. The space \(W^m L_\varphi(\Omega) \) is called the Musielak Orlicz Sobolev space.

Lemma 2.2. (See [21]). Let
\[
\overline{\rho}_{\varphi, \Omega}(u) = \sum_{|\alpha| \leq m} \rho_{\varphi, \Omega}\left(D^\alpha u \right) \quad \text{and} \quad \| u \|_{m, \varphi, \Omega} = \inf \{ \lambda > 0 : \overline{\rho}_{\varphi, \Omega}\left(\frac{u}{\lambda} \right) \leq 1 \}
\]
for \(u \in W^m L_\varphi(\Omega) \), these functionals defined a convex modular and a norm respectively on the Sobolev-Orlicz-Musielak space \(W^m L_\varphi(\Omega) \).
Let us move to the completeness of the Sobolev-Orlicz-Musielak space $W^m_{\varphi}(\Omega)$.

Lemma 2.3. (See [21]). Let φ a Musielak function such that there exist a constant $c_0 > 0$ such that $\inf_{x \in \Omega} \varphi(x, 1) \geq c_0$.

Then, the space $\left(W^m_{\varphi}(\Omega), \|\cdot\|^{m}_{\varphi, \Omega}\right)$ is a Banach space.

The space $W^m_{\varphi}(\Omega)$ will always be identified to a subspace of the product $\prod_{|\alpha| \leq m} L_{\varphi}(\Omega) = \prod L_{\varphi}$, this subspace is $\sigma(\prod L_{\varphi}, \prod E_{\psi})$ closed.

The space $W^m_{\varphi}(\Omega)$ is defined as the $\sigma(\prod L_{\varphi}, \prod E_{\psi})$ closure of $D(\Omega)$ in $W^m_{\varphi}(\Omega)$, and the space $W^m_{0\varphi}(\Omega)$ as the (norm) closure of the Schwartz space $D(\Omega)$ in $W^m_{\varphi}(\Omega)$.

Let $W^m_{\varphi}(\Omega)$ be the $\sigma(\prod L_{\varphi}, \prod E_{\psi})$ closure of $D(\Omega)$ in $W^m_{\varphi}(\Omega)$.

The following spaces of distributions will also be used:

$W^{-m}_{\psi}(\Omega) = \left\{ f \in D'(\Omega); f = \sum_{|\alpha| \leq m} (-1)^{|\alpha|} D^\alpha f_\alpha \text{ with } f_\alpha \in L_{\psi}(\Omega) \right\}$.

and

$W^{-m}_{E\psi}(\Omega) = \left\{ f \in D'(\Omega); f = \sum_{|\alpha| \leq m} (-1)^{|\alpha|} D^\alpha f_\alpha \text{ with } f_\alpha \in E_{\psi}(\Omega) \right\}$.

We introduce the following type of convergence which plays an important role in the proof of our results.

Definition 2.4. A sequence of functions $u_n \in W^m_{\varphi}(\Omega)$ is said to be convergent for the modular convergence to $u \in W^m_{\varphi}(\Omega)$ if there exists a constant $k > 0$ such that

$$\lim_{n \to \infty} \rho_{\varphi, \Omega}(\frac{u_n - u}{k}) = 0.$$

Now, we give the following key inequalities.

Lemma 2.5. (See [21]). Let φ a Musielak-Orlicz function and ψ its complementary function. Then, we have

$$ts \leq \varphi(x, t) + \psi(x, s), \quad \forall t, s \geq 0, x \in \Omega.$$

This inequality implies that

$$\|u\|_{\varphi, \Omega} \leq \rho_{\varphi, \Omega}(u) + 1.$$

We have also the relations between the norm and the modular in $L_{\varphi}(\Omega)$

$$\|u\|_{\varphi, \Omega} \leq \rho_{\varphi, \Omega}(u) \text{ if } \|u\|_{\varphi, \Omega} > 1,$$

Volumen 55, Número 1, Año 2021
\[\|u\|_{\varphi, \Omega} \geq \rho_{\varphi, \Omega}(u) \text{ if } \|u\|_{\varphi, \Omega} \leq 1. \]

Finally, we give the so called Hölder inequality
\[\left| \int_{\Omega} u(x)v(x) \, dx \right| \leq \|u\|_{\varphi, \Omega} \|v\|_{\psi, \Omega}. \]

2.3. Auxiliary results

This subsection is devoted to some auxiliary lemmas and key inequalities used later in the prove of our results.

Lemma 2.6. (See [24]). Let \(\Omega \) be a bounded Lipschitz domain in \(\mathbb{R}^N \) and let \(\varphi \) and \(\psi \) be two complementary Musielak–Orlicz functions which satisfy the following conditions:

There exist a constant \(c_0 > 0 \) such that \(\inf_{x \in \Omega} \varphi(x, 1) \geq c_0 \). There exist a constant \(A > 0 \) such that for all \(x, y \in \Omega \) with \(|x - y| \leq \frac{1}{2} \) we have
\[\frac{\varphi(x, t)}{\varphi(y, t)} \leq t \left(\frac{1}{\log \left(\frac{1}{1 - |x - y|} \right)} \right), \quad \forall \, t \geq 1. \]

If \(D \subset \Omega \) is a bounded measurable set, then
\[\int_D \varphi(x, \lambda) \, dx < \infty, \quad \text{for all } \lambda > 0. \]

There exist a constant \(c_2 > 0 \) such that \(\psi(x, 1) \leq c_2 \) a.e in \(\Omega \).

Then, \(D(\Omega) \) is dense in the both spaces \(L_\varphi(\Omega) \) and \(W^{1}_0 L_\varphi(\Omega) \) for their modular convergence and \(D(\Omega) \) is dense in \(W^{1}L_\varphi(\Omega) \) the modular convergence in \(W^{1}L_\varphi(\Omega) \).

Consequently, the action of a distribution \(S \) in \(W^{-1}L_\psi(\Omega) \) on an element \(u \) of \(W^{1}_0 L_\varphi(\Omega) \) is well defined. It will be denoted by \(\langle S, u \rangle \).

Lemma 2.7. [7] Let \(F : \mathbb{R} \to \mathbb{R} \) be uniformly Lipschitzian, with \(F(0) = 0 \). Let \(\varphi \) be a Mustelak–Orlicz function and let \(u \in W^{1}_0 L_\varphi(\Omega) \). Then \(F(u) \in W^{1}_0 L_\varphi(\Omega) \).

Moreover, if the set \(D \) of discontinuity points of \(F' \) is finite, we have
\[\frac{\partial}{\partial x_i} F(u) = \begin{cases} F'(u) \frac{\partial u}{\partial x_i} & \text{a.e in } \{ x \in \Omega : u(x) \in D \} \\ 0 & \text{a.e in } \{ x \in \Omega : u(x) \notin D \}. \end{cases} \]

Lemma 2.8 (Poincaré inequality). (See [24]). Let \(\varphi \) a Musielak Orlicz function which satisfies the assumptions of Lemma 2.6, suppose that \(\varphi(x, t) \) decreases with respect of one of coordinate of \(x \). Then, that exists a constant \(c > 0 \) depends only of \(\Omega \) such that
\[\int_{\Omega} \varphi(x, |u(x)|) \, dx \leq \int_{\Omega} \varphi(x, c|\nabla u(x)|) \, dx, \quad \forall u \in W^{1}_0 L_\varphi(\Omega). \]
Lemma 2.9. Let \(u_n, u \in L_\varphi(\Omega) \). If \(u_n \to u \) with respect to the modular convergence, then \(u_n \to u \) for \(\sigma(L_\varphi(\Omega), L_\psi(\Omega)) \).

Proof. Let \(\lambda > 0 \) be such that \(\int_\Omega \varphi(x, \frac{u_n - u}{\lambda}) \to 0 \). Thus, for a subsequence, \(u_n \to u \) a.e. in \(\Omega \). Take \(v \in L_\psi(\Omega) \). Multiplying \(v \) by a suitable constant, we can assume \(\lambda v \in L_\psi(\Omega) \). By Young’s inequality,

\[
|(u_n - u)v| \leq \varphi(x, \frac{u_n - u}{\lambda}) + \psi(x, \lambda v),
\]

which implies, by Vitali’s theorem, that \(\int_\Omega |(u_n - u)v| \to 0 \). □✓

Lemma 2.10. (See [7]). Let \(\Omega \) be a bounded open subset of \(\mathbb{R}^N \) which satisfies the segment property and let \(u \in W_0^1 L_\varphi(\Omega) \). Then, there exists a sequence \((u_n) \subset D(\Omega) \) such that \(u_n \to u \) for modular convergence in \(W_0^1 L_\varphi(\Omega) \).

Furthermore, if \(u \in W_0^1 L_\varphi(\Omega) \cap L^\infty(\Omega) \) then \(||u_n||_\infty \leq (N+1)||u||_\infty \).

Lemma 2.11. (See [6]). Let \(\Omega \) be an open bounded subset of \(\mathbb{R}^N \) satisfying the segment property. If \(u \in (W_0^1 L_\varphi(\Omega))^N \) then

\[
\int_\Omega \text{div } u \, dx = 0.
\]

Lemma 2.12. (See [20]) Let \(\Omega \) be an open subset of \(\mathbb{R}^N \) with finite measure and let \(\varphi \) and \(\psi \) be two Musielak Orlicz functions. Let \(f : \Omega \times \mathbb{R}^p \to \mathbb{R}^q \) be a Carathodory function such that for a.e. \(x \in \Omega \) and all \(s \in \mathbb{R}^p \):

\[
|f(x,s)| \leq c(x) + k_1 \psi^{-1}_x \varphi(x, k_2 |s|). \tag{15}
\]

where \(k_1 \) and \(k_2 \) are real positives constants and \(c(.) \in E_\psi(\Omega) \).

Then the Nemytskii Operator \(N_f \) defined by \(N_f(u)(x) = f(x,u(x)) \) is continuous from

\[
\left(P(E_\varphi(\Omega), \frac{1}{k_2}) \right)^p = \prod \left\{ u \in L_\varphi(\Omega) : d(u, E_\varphi(\Omega)) < \frac{1}{k_2} \right\}.
\]

into \((L_\psi(\Omega))^q \) for the modular convergence.

Furthermore if \(c(\cdot) \in E_\gamma(\Omega) \) and \(\gamma \ll \psi \) then \(N_f \) is strongly continuous from \(\left(P(E_\varphi(\Omega), \frac{1}{k_2}) \right)^p \) to \((E_\gamma(\Omega))^q \).
3. Assumptions and main result

Throughout the paper, Ω will be a bounded Lipschitz subset of \(\mathbb{R}^N \) \(N \geq 2 \), and let \(\varphi \) and \(\gamma \) two Musielak Orlicz functions such that \(\varphi \) satisfies the conditions of Lemma 2.8 and \(\gamma \prec \varphi \).

Given an obstacle measurable function \(\Psi : \Omega \rightarrow \mathbb{R} \), consider the set

\[
K_{\Psi} = \{ u \in W^1_0 L_\varphi(\Omega) : u \geq \Psi \text{ a.e. in } \Omega \}.
\]

This convex set is sequentially \(\sigma(\Pi L_\varphi, \Pi E_\psi) \) closed in \(W^1_0 L_\varphi(\Omega) \) (see [8]).

Let \(A : D(A) \subset W^1_0 L_\varphi(\Omega) \rightarrow W^{-1} E_\psi(\Omega) \) be a mapping given by

\[
A(u) = - \text{div} a(x, u, \nabla u),
\]

where anything is a Carathéodory function satisfying, for a.e. \(x \in \Omega \) and for all \(s, \xi \in \mathbb{R}^N, \xi \neq \xi' \):

\[
|a(x, s, \xi)| \leq \beta \left(c(x) + \psi^{-1}_x \gamma(x, \nu |s|) + \psi^{-1}_x \varphi(x, \nu |\xi|) \right),
\]

(16)

\[
\left(a(x, s, \xi) - a(x, s, \xi') \right) (\xi - \xi') > 0,
\]

(17)

\[
a(x, s, \xi), \xi \geq \alpha \varphi(x, |\xi|),
\]

(18)

where \(c(.) \) belongs to \(E_\psi(\Omega) \), \(c(.) \geq 0 \) and \(\alpha, \beta, \nu \in \mathbb{R}^+ \).

\[\Phi : \mathbb{R} \rightarrow \mathbb{R}^N \text{ is a continuous function.} \]

(19)

Furthermore, let \(g(x, s, \xi) : \Omega \times \mathbb{R} \times \mathbb{R}^N \rightarrow \mathbb{R} \) be a Carathéodory function such that for a.e. \(x \in \Omega \) and for all \(s \in \mathbb{R} \), \(\xi \in \mathbb{R}^N \), the following growth condition

\[
|g(x, s, \xi)| \leq \rho(x) + h(s) \varphi(x, |\xi|),
\]

(20)

is satisfied, where \(h : \mathbb{R} \rightarrow \mathbb{R}^+ \) is a continuous positive function which belongs to \(L^1(\mathbb{R}) \) and \(\rho(x) \) belongs \(L^1(\Omega) \).

For each \(v \in K_{\Psi} \cap L^\infty(\Omega) \), there exists a sequence

\[
v_n \in K_{\Psi} \cap W^1_0 E_\varphi(\Omega) \cap L^\infty(\Omega) \text{ such that } v_n \rightarrow v \text{ for the modular convergence.}
\]

(21)

Finally, we assume that

\[
K_{\Psi} \cap L^\infty(\Omega) \neq \emptyset
\]

(22)

\[f \text{ is an element of } L^1(\Omega).
\]

(23)
We define:

\[T^1_0,\varphi(\Omega) = \{ u: \Omega \rightarrow \mathbb{R} \text{ measurable such that } T_k(u) \in W^{1}_0(\varphi) \forall k \geq 0 \}, \]

where \(T_k: \mathbb{R} \rightarrow \mathbb{R} \) is the truncation at height \(k \) defined by:

\[
T_k(s) = \begin{cases}
 s & \text{if } |s| \leq k, \\
 \frac{k}{|s|} s & \text{if } |s| > k.
\end{cases}
\] (24)

The aim of this paper is to prove the following existence result:

Theorem 3.1. Assume that the assumptions (16)–(23) hold true, then there exists \(u \in T^1_0,\varphi(\Omega) \) such that \(u \geq \Psi \) and

\[
\int_\Omega a(x,u,\nabla u)\nabla T_k(u-v) \, dx + \int_\Omega \Phi_n(u)\nabla T_k(u-v) \, dx
\]

\[
+ \int_\Omega g(x,u,\nabla u)T_k(u-v) \, dx \leq \int_\Omega f_k(u-v) \, dx,
\]

for all \(v \in K_\Psi \cap L^\infty(\Omega), \forall k \geq 0. \)

The proof of Theorem 3.1 is done in 5 steps.

Step 1: Approximate problem.

For \(n \in \mathbb{N}^* \), let \(f_n \) be regular functions which strongly converge to \(f \) in \(L^1(\Omega) \) such that \(||f_n||_1 \leq c \) for some constant \(c \) and \(\Phi_n \) is a Lipschitz continuous bounded function from \(\mathbb{R} \) into \(\mathbb{R}^N \) and set \(g_n(x,s,\xi) = g(x,T_n(s),\xi) \).

Consider the approximate unilateral problem:

\[
(P_n) \begin{cases}
 u_n \in K_\Psi \cap D(A) \\
 \int_\Omega a(x,u_n,\nabla u_n)\nabla T_k(u_n-v) \, dx + \int_\Omega \Phi(u_n)\nabla T_k(u_n-v) \, dx \\
 + \int_\Omega g(x,u_n,\nabla u_n)T_k(u_n-v) \, dx \leq \int_\Omega f_n T_k(u_n-v) \, dx,
\end{cases}
\]

for all \(v \in K_\Psi. \)

For fixed \(n > 0 \), it’s obvious to observe that \(g_n(x,s,\xi) \xi \geq 0 \), \(|g_n(x,s,\xi)| \leq |g(x,s,\xi)| \) and \(|g_n(x,s,\xi)| \leq n \), Since \(g_n \) is bounded for any fixed \(n \), as a consequence, proving of a weak solution \(u_n \in W^1_0(\varphi) \) of \((P_n) \) is an easy task (see e.g. [8, Theorem 8], [15, Proposition 1]).

Step 2 : A priori estimates.
Moreover, from (20), one gets Lemma 2.11, we obtain

\[\int_\Omega a(x, u_n, \nabla u_n) \nabla (\exp(G(u_n))) T_k(u_n - v_0)\ dx \]
\[+ \int_\Omega \Phi_n(u_n) \nabla (\exp(G(u_n))) T_k(u_n - v_0)\ dx \]
\[+ \int_\Omega g_n(x, u_n, \nabla u_n) \exp(G(u_n)) T_k(u_n - v_0)\ dx \]
\[\leq \int_\Omega f_n \exp(G(u_n)) T_k(u_n - v_0)\ dx. \tag{25} \]

Defining \(\Phi_n(t) = \int_0^t \Phi_n(\tau) \nabla (\exp(G(u_n))) T_k(u_n - v_0)\ d\tau \), one has \(\Phi_n(0) = 0 \). As each component of \(\Phi_n \) is uniformly Lipschitz continuous, the Lemma 2 in [14] ensures that the function \(\Phi_n(u_n) \) belongs to \((W^1_0 L^\infty(\Omega))^N \). So that by Lemma 2.11, we obtain

\[\int_\Omega \Phi_n(u_n) \nabla u_n\ dx = \int_\Omega \text{div}(\Phi_n(u_n)) = 0\ dx. \]

Moreover, from (20), one gets

\[\int_\Omega a(x, u_n, \nabla u_n) \nabla (T_k(u_n - v_0)) \exp(G(u_n))\ dx \]
\[+ \int_\Omega a(x, u_n, \nabla u_n) \nabla u_n \frac{h(u_n)}{\alpha} \exp(G(u_n)) T_k(u_n - v_0)\ dx \]
\[\leq \int_\Omega h(u_n) \phi(x, |\nabla u_n|) \exp(G(u_n)) T_k(u_n - v_0)\ dx \]
\[+ \int_\Omega (f_n + \rho(x)) \exp(G(u_n)) T_k(u_n - v_0)\ dx. \tag{26} \]

By using (18) and the fact that \(||f_n||_{L^1(\Omega)} \leq ||f||_{L^1(\Omega)}, \rho \in L^1(\Omega) \), we have

\[\int_{\{0 \leq u_n - v_0 \leq \xi\}} a(x, u_n, \nabla u_n) \nabla u_n \exp(G(u_n))\ dx \]
\[\leq \int_{\{0 \leq u_n - v_0 \leq \xi\}} a(x, u_n, \nabla u_n) \nabla v_0 \exp(G(u_n))\ dx + c_1 \tag{27} \]
\[\leq c \int_{\{0 \leq u_n - v_0 \leq \xi\}} a(x, u_n, \nabla u_n) \nabla v_0 \frac{\exp(G(u_n))}{c}\ dx + c_1, \]

Revista Colombiana de Matemáticas
where c_1 is a positive constant independent of n and $0 < c < 1$.

Using (17), we have

$$
\int_{\{0 \leq u_n - v_0 \leq k\}} a(x, u_n, \nabla u_n) \nabla u_n \exp(G(u_n)) \, dx
\leq c \left\{ \int_{\{0 \leq u_n - v_0 \leq k\}} a(x, u_n, \nabla u_n) \nabla u_n \exp(G(u_n)) \, dx
- \int_{\{0 \leq u_n - v_0 \leq k\}} a \left(x, u_n, \frac{\nabla v_0}{c} \right) \left(\nabla u_n - \frac{\nabla v_0}{c} \right) \exp(G(u_n)) \, dx + c_1 \right\},
$$

which implies that,

$$(1 - c) \int_{\{0 \leq u_n - v_0 \leq k\}} a(x, u_n, \nabla u_n) \nabla u_n \exp(G(u_n)) \, dx
\leq c \int_{\{0 \leq u_n - v_0 \leq k\}} a \left(x, u_n, \frac{\nabla v_0}{c} \right) \left| \nabla u_n - \frac{\nabla v_0}{c} \right| \exp(G(u_n)) \, dx + c_1
\leq c \int_{\{0 \leq u_n - v_0 \leq k\}} a \left(x, u_n, \frac{\nabla v_0}{c} \right) \left| \nabla v_0 \right| \exp(G(u_n)) \, dx
+ c \int_{\{0 \leq u_n - v_0 \leq k\}} a \left(x, u_n, \frac{\nabla v_0}{c} \right) \left| \nabla u_n \right| \exp(G(u_n)) \, dx + c_1.
$$

(28)

Since $\nabla v_0 \in (E_\phi(\Omega))^N$, then by using the Young’s inequality and the condition (16) we have,

$$(1 - c) \int_{\{0 \leq u_n - v_0 \leq k\}} a(x, u_n, \nabla u_n) \nabla u_n \exp(G(u_n)) \, dx
\leq \frac{\alpha(1 - c)}{2} \int_{\{0 \leq u_n - v_0 \leq k\}} \varphi(x, |\nabla u_n|) \exp(G(u_n)) \, dx + c_2(k),$$

where $c_2(k)$ is a positive constant which depends only on k.

Finally, from (17), we can conclude that,

$$
\int_{\{0 \leq u_n - v_0 \leq k\}} \varphi(x, |\nabla u_n|) \exp(G(u_n)) \, dx \leq c_3(k).
$$

(31)

Since $\exp(G(-\infty)) \leq \exp(G(u_n)) \leq \exp(G(+\infty))$ and $\exp(G(\pm\infty)) \leq \exp \left(\frac{||h||_{L^1(\Omega)}}{\alpha} \right)$, we get

$$
\int_{\{0 \leq u_n - v_0 \leq k\}} \varphi(x, |\nabla u_n|) \, dx \leq c_4(k).
$$

(32)
Similarly, taking \(v = u_n + \exp(-G(u_n))T_k(u_n - v_0)^- \) as test function in \((P_n)\), we obtain

\[
(1 - c) \int_{\{-k \leq u_n - v_0 \leq 0\}} a(x, u_n, \nabla u_n) \nabla u_n \exp(-G(u_n)) \, dx \\
\leq \frac{\alpha(1 - c)}{2} \int_{\{-k \leq u_n - v_0 \leq 0\}} \varphi(x, |\nabla u_n|) \exp(-G(u_n)) \, dx + c_5(k),
\]

and then

\[
\int_{\{-k \leq u_n - v_0 \leq 0\}} \varphi(x, |\nabla u_n|) \, dx \leq c_6(k).
\]

Combining (32) and (34), we deduce that,

\[
\int_{\{|u_n - v_0| \leq k\}} \varphi(x, |\nabla T_k(u_n)|) \, dx \leq C(k + ||v_0||_\infty).
\]

(36)

Thanks to Lemma 2.8, there exists a constant \(\lambda > 0 \) depends only of \(\Omega \) such that

\[
\int_{\Omega} \varphi(x, |v|) \, dx \leq \int_{\Omega} \varphi(x, \lambda |\nabla v|) \, dx \quad \forall v \in W_0^1 \varphi(\Omega).
\]

(37)

Taking \(v = \frac{1}{\lambda} |T_k(u_n)| \) in (37) and using (36), one has

\[
\int_{\Omega} \varphi(x, \frac{1}{\lambda} |T_k(u_n)|) \, dx \leq \int_{\Omega} \varphi(x, |\nabla T_k(u_n)|) \, dx \leq C(k + ||v_0||_\infty).
\]

(38)

Then we deduce by using (38), that

\[
\text{meas} \{|u_n| > k\} \leq \frac{1}{\inf_{x \in \Omega} \varphi(x, \frac{k}{\lambda})} \int_{\{|u_n| > k\}} \varphi(x, \frac{k}{\lambda}) \, dx \\
\leq \frac{1}{\inf_{x \in \Omega} \varphi(x, \frac{k}{\lambda})} \int_{\Omega} \varphi(x, \frac{1}{\lambda} |T_k(u_n)|) \, dx \\
\leq \frac{C(k + ||v_0||_\infty)}{\inf_{x \in \Omega} \varphi(x, \frac{k}{\lambda})} \forall n, \quad \forall k \geq 0.
\]

(39)
For any $\beta > 0$, we have
\[
\text{meas}\{|u_n - u_m| > \beta\} \leq \text{meas}\{|u_n| > k\} + \text{meas}\{|u_m| > k\} + \text{meas}\{|T_k(u_n) - T_k(u_m)| > \beta\}.
\]
so that
\[
\text{meas}\{|u_n - u_m| > \beta\} \leq 2C(k + ||v_0||_{L^\infty}) \inf_{x \in \Omega} \varphi(x, \frac{\lambda}{k}) + \text{meas}\{|T_k(u_n) - T_k(u_m)| > \beta\}.
\]
(40)

By using (38), we deduce that $(T_k(u_n))$ is bounded in $W^{1,0}_0 L^\varphi(\Omega)$, and then we can assume that $(T_k(u_n))$ is a Cauchy sequence in measure in Ω.

Let $\varepsilon > 0$ then by (40) and the fact that $2C(k + ||v_0||_{L^\infty}) \inf_{x \in \Omega} \varphi(x, \frac{\lambda}{k}) \to 0$ as $k \to +\infty$ there exists some $k = k(\varepsilon) > 0$ such that
\[
\text{meas}\{|u_n - u_m| > \lambda\} < \varepsilon, \quad \text{for all } n, m \geq h_0(k(\varepsilon), \lambda).
\]
This proves that u_n is a Cauchy sequence in measure, thus, u_n converges almost everywhere to some measurable function u.

Finally, by (36) and Lemma 4.4 of [13], we obtain for all $k > 0$
\[
\begin{cases}
T_k(u_n) \rightharpoonup T_k(u) \text{ weakly in } W^{1,0}_0 L^\varphi(\Omega) \text{ for } \sigma(\Pi L^\varphi, \Pi E^\psi) \\
T_k(u_n) \to T_k(u) \text{ strongly in } E^\varphi(\Omega) \text{ and a.e. in } \Omega.
\end{cases}
\]
(41)

Next step, we will use Banach-Steinhaus Theorem to prove the following proposition but first let remark that for all $s \in \mathbb{R}$ we have
\[
a(x, T_k(u_n), \nabla T_k(u_n)) = \begin{cases}
a(x, u_n, \nabla u_n) & \text{if } |s| \leq k, \\
0 & \text{if } |s| > k.
\end{cases}
\]
(42)

Proposition 3.2. Let u_n be a solution of the approximate problem (\mathcal{P}_n), then
\[
(a(x, T_k(u_n), \nabla T_k(u_n)))_n \text{ is bounded in } (L^\varphi(\Omega))^N.
\]
(43)

Proof. Let $w \in (E^\varphi(\Omega))^N$ with $||w||_{L^\varphi, \Omega} \leq 1$. Thanks to (17) we can write
\[
(a(x, u_n, \nabla u_n) - a(x, u_n, w)) (\nabla u_n - w) > 0,
\]

hence
\[
\int_{|u_n| \leq k} a(x, u_n, \nabla u_n) w \, dx \leq \int_{|u_n| \leq k} a(x, u_n, \nabla u_n) \nabla u_n \, dx - \int_{|u_n| \leq k} a(x, u_n, w) (\nabla u_n - w) \, dx.
\]
(44)
Using (16) and since \(T_k(u_n) \) is bounded in \(W^1_0 L_\phi(\Omega) \), one easily deduces that
\[
\int_\Omega a(x, T_k(u_n), \nabla T_k(u_n)) \nabla T_k(u_n) \leq c_8(k). \tag{45}
\]
Combining the fact that \(T_k(u_n) \) is bounded in \(W^1_0 L_\phi(\Omega) \), (44) and (46), we get
\[
\int_\Omega a(x, T_k(u_n), \nabla T_k(u_n)) w \leq c_9(k). \tag{46}
\]
Hence, thanks to the Banach-Steinhaus theorem, the sequence \((a(x, u_n, \nabla u_n))_n \) is bounded in \((L_\psi(\Omega))^N \).
\[\square\]

Step 3: Almost everywhere convergence of gradients.

We will introduce the following function of one real variable \(s \), which is defined as
\[
h_m(s) = \begin{cases}
1 & \text{if } |s| \leq j \\
0 & \text{if } |s| \geq j + 1 \\
 j + 1 - s & \text{if } j \leq |s| \leq j + 1 \\
 j + 1 + s & \text{if } -(j + 1) \leq |s| \leq -j
\end{cases}
\]
with \(j \) a nonnegative real parameter.

Let \(\Omega_s = \{ x \in \Omega : |\nabla T_k(u(x))| \leq s \} \) and denote by \(\chi_s \) the characteristic function of \(\Omega_s \). Clearly, \(\Omega_s \subset \Omega_{s+1} \) and \(\operatorname{meas}(\Omega \setminus \Omega_s) \to 0 \) as \(s \to \infty \).

In order to prove the modular convergence of truncation \(T_k(u_n) \), we shall show the following assertions:

Assertion (i).
\[
\lim_{j \to \infty} \limsup_{n \to \infty} \int_{\{j \leq |u_n| \leq j+1\}} a(x, u_n, \nabla u_n) \nabla u_n \, dx = 0. \tag{47}
\]

Assertion (ii).
\[
T_k(u_n) \to T_k(u) \text{ in } W^1_0 L_\phi(\Omega) \text{ for the modular convergence } \forall k > 0. \tag{48}
\]

Proof. of Assertion (i). If we take \(v = u_n + \exp(-G(u_n)) T_1(u_n - T_j(u_n))^- \) as test function in \((P_n)\), we get,
\[
\int_{\{-(j+1) \leq u_n \leq -j\}} a(x, u_n, \nabla u_n) \nabla u_n \exp(-G(u_n)) \, dx \\
\leq \int_{\Omega} \left(-f_n + \rho(x) \right) \exp(-G(u_n)) T_1(u_n - T_j(u_n))^- \, dx. \tag{49}
\]

Revista Colombiana de Matemáticas
Using the fact that
\[\exp(G(-\infty)) \leq \exp(-G(u_n)) \leq \exp(G(+\infty)) \]
we deduce
\[\int_{\{-(j+1) \leq u_n \leq -j\}} a(x, u_n, \nabla u_n) \nabla u_n \, dx \leq -c_{10} \int_{\Omega} (f_n - \rho(x)) \exp(-G(u_n)) T_1 (u_n - T_j(u_n))^- \, dx. \]
(50)

Since \(f_n \to f \) in \(L^1(\Omega) \) and \(|f_n \exp(-G(u_n)) T_1 (u_n - T_j(u_n))^-| \leq \exp\left(\frac{||h||_{L^1(\Omega)}}{\alpha} \right) \) \(|f_n| \) then Vitali’s Theorem permits us to confirm that
\[\lim_{j \to \infty} \lim_{n \to \infty} \int_{\Omega} f_n \exp(-G(u_n)) T_1 (u_n - T_j(u_n))^- \, dx = 0. \]
(51)

Similarly, since \(\rho \in L^1(\Omega) \), we obtain
\[\lim_{j \to \infty} \lim_{n \to \infty} \int_{\Omega} \rho \exp(-G(u_n)) T_1 (u_n - T_j(u_n))^- \, dx = 0. \]
(52)

Putting together the results from equations (50), (51), (52), we conclude that
\[\lim_{j \to \infty} \limsup_{n \to \infty} \int_{\{-(j+1) \leq u_n \leq -j\}} a(x, u_n, \nabla u_n) \nabla u_n \, dx = 0. \]
(53)

On the other hand, taking \(v = u_n - \eta \exp(G(u_n)) T_1 (u_n - T_j(u_n))^+ \) as test function in \((P_n)\) and reasoning as in the proof of (53), we deduce that
\[\lim_{j \to \infty} \limsup_{n \to \infty} \int_{\{j \leq u_n \leq j+1\}} a(x, u_n, \nabla u_n) \nabla u_n \, dx = 0. \]
(54)

Thus (47) follows from (53) and (54).

\[\square \]

Proof. of Assertion (ii). Let \(k \geq ||v_0||_\infty \). By using (21) there exists a sequence there exists \(v_j \in K_\psi \cap W_0^1 E_{\psi}(\Omega) \cap L^\infty(\Omega) \) which converges to \(T_k(u) \) for the modular convergence in \(W_0^1 E_{\psi}(\Omega) \).

\[\square \]
Let \(v = u_n - \eta \exp(G(u_n))(T_k(u_n) - T_k(v_i))^+ h_j(u_n) \) as test function in \((\mathcal{P}_n) \), we obtain by using (18) and (20)

\[
\int_{\{T_k(u_n) - T_k(v_i) \geq 0\}} \exp(G(u_n))a(x, T_k(u_n), \nabla T_k(u_n))\nabla(T_k(u_n) - T_k(v_i))^+ h_j(u_n) \, dx \\
- \int_{\{j \leq n \leq j+1\}} \exp(G(u_n))a(x, u_n, \nabla u_n)\nabla(u_n(T_k(u_n) - T_k(v_i))^+ \, dx \\
\leq \int_\Omega \rho(x)(T_k(u_n) - T_k(v_i))^+ h_j(u_n) \exp(G(u_n)) \, dx \\
+ \int_\Omega f_n(x)(T_k(u_n) - T_k(v_i))^+ h_j(u_n) \exp(G(u_n)) \, dx.
\]

(55)

Thanks to (54), the second integral tends to zero as \(n \) and \(j \) tend to infinity, and by Lebesgue Theorem, we deduce that the right–hand side converges to zero as \(n \) and \(i \) tend to infinity.

Then the least inequality becomes,

\[
\int_{\{T_k(u_n) - T_k(v_i) \geq 0\}} \exp(G(u_n))a(x, T_k(u_n), \nabla T_k(u_n))\nabla(T_k(u_n) - T_k(v_i))^+ h_j(u_n) \, dx \\
- \int_{\{T_k(u_n) - T_k(v_i) \geq 0, |u_n| \geq k\}} \exp(G(u_n))a(x, u_n, \nabla u_n)\nabla T_k(v_i) h_j(u_n) \, dx \leq \epsilon(n, i, j).
\]

(56)

Now, observe that

\[
\int_{\{T_k(u_n) - T_k(v_i) \geq 0, |u_n| \geq k\}} \exp(G(u_n))a(x, u_n, \nabla u_n)\nabla T_k(v_i) h_j(u_n) \, dx \\
\leq c_1 \int_{\{u_n \geq k\}} |a(x, T_{j+1}(u_n), \nabla T_{j+1}(u_n))| |\nabla v_i| \, dx.
\]

(57)

On the one hand, since \(|a(x, T_{j+1}(u_n), \nabla T_{j+1}(u_n))|\) is bounded in \((L^\infty(\Omega))^N\), we get for a subsequence, \(a(x, T_{j+1}(u_n), \nabla T_{j+1}(u_n)) \rightharpoonup l_j\) weakly in \((L^\infty(\Omega))^N\) for \(\sigma(\Pi(x, \Pi E \varphi)\right) \) with \(l_j \in (L^\infty(\Omega))^N \) and since \(|\nabla v_i| \chi_{\{|u_n| \geq k\}}| \) converges strongly to \(|\nabla v_i| \chi_{\{|u_n| \geq k\}}| \) in \(E_{\varphi}(\Omega) \) we have by letting \(n \to \infty \)

\[
\int_{\{u_n \geq k\}} |a(x, T_{j+1}(u_n), \nabla T_{j+1}(u_n))| |\nabla v_i| \, dx \to \int_{\{u_n \geq k\}} l_j |\nabla v_i| \, dx.
\]

Now, we use the modular convergence of \((v_i)_i\), which leads to

\[
\int_{\{u_n \geq k\}} l_j |\nabla v_i| \, dx \to \int_{\{u_n \geq k\}} l_j |\nabla T_k(u)| \, dx.
\]
Since $\nabla T_k(u) = 0$ on the subset $\{x \in \Omega : |u(x)| > k\}$, we deduce that
\[
\int_{\{|u_n| \geq k\}} |a(x, T_{j+1}(u_n), \nabla T_{j+1}(u_n))| |\nabla v_i| \, dx = \epsilon(n,i,j).
\]

Combining this with (56) and (57) we obtain.
\[
\int_{\{T_k(u_n)-T_k(v_i) \geq 0\}} \exp(G(u_n))a(x, T_k(u_n), \nabla T_k(u_n))\nabla(T_k(u_n)-T_k(v_i))h_j(u_n) \, dx \\
\leq \epsilon(n, i, j).
\]
(58)

On the other side, we have
\[
\int_{\{T_k(u_n)-T_k(v_i) \geq 0\}} \exp(G(u_n))a(x, T_k(u_n), \nabla T_k(u_n))\nabla(T_k(u_n)-T_k(v_i))h_j(u_n) \, dx \\
\geq \int_{\{T_k(u_n)-T_k(v_i) \geq 0\}} \exp(G(u_n))[a(x, T_k(u_n), \nabla T_k(u_n)) - a(x, T_k(u_n), \nabla T_k(v_i)\chi_i^j)] \, dx \\
\times [\nabla T_k(u_n) - \nabla T_k(v_i)\chi_i^j]h_j(u_n) \, dx \\
+ \int_{\{T_k(u_n)-T_k(v_i) \geq 0\}} \exp(G(u_n))a(x, T_k(u_n), \nabla T_k(v_i)\chi_i^j)[\nabla T_k(u_n)] - \nabla T_k(v_i)\chi_i^j]h_j(u_n) \, dx \\
- c_{12} \int_{\Omega \setminus \Omega_s} |a(x, T_k(u_n), \nabla T_k(u_n))| |\nabla v_i| \, dx,
\]
(59)

where χ_i^j denotes the characteristic function of the subset $\Omega_s^j = \{x \in \Omega : |\nabla T_k(v_i)| \leq s\}$.

Reasoning as above, we get
\[
\int_{\Omega \setminus \Omega_s} |a(x, T_k(u_n), \nabla T_k(u_n))| |\nabla v_i| \, dx = \int_{\Omega \setminus \Omega_s} l_k |\nabla T_k(u)| \, dx + \epsilon(n,i,j).
\]
(60)

For what concerns the second term of the right hand side of the (59) we can write,
\[
\int_{\{T_k(u_n)-T_k(v_i) \geq 0\}} \exp(G(u_n))a(x, T_k(u_n), \nabla T_k(v_i)\chi_i^j)[\nabla T_k(u_n)] - \nabla T_k(v_i)\chi_i^j]h_j(u_n) \, dx \\
= \int_{\{T_k(u_n)-T_k(v_i) \geq 0\}} \exp(G(u_n))a(x, T_k(u_n), \nabla T_k(v_i)\chi_i^j)\nabla T_k(u_n) \, dx \\
- \int_{\{T_k(u_n)-T_k(v_i) \geq 0\}} \exp(G(u_n))a(x, T_k(u_n), \nabla T_k(v_i)\chi_i^j)\nabla T_k(v_i)\chi_i^j]h_j(u_n) \, dx.
\]
(61)
Starting with the first term of the last equality, we have by letting $n \to \infty$,

\[\int_{\{T_k(u_n) - T_k(v_i) \geq 0\}} \exp(G(u_n))a(x, T_k(u_n), \nabla T_k(v_i) \chi_i^k) \nabla T_k(u_n) \, dx\]

\[= \int_{\{T_k(u) - T_k(v_i) \geq 0\}} \exp(G(u))a(x, T_k(u), \nabla T_k(v_i) \chi_i^k) \nabla T_k(u) \, dx + \epsilon(n),\]

since

\[\exp(G(u_n))a(x, T_k(u_n), \nabla T_k(v_i) \chi_i^k) \chi_{\{T_k(u_n) - T_k(v_i) \geq 0\}} \rightarrow \exp(G(u))a(x, T_k(u), \nabla T_k(v_i) \chi_i^k) \chi_{\{T_k(u) - T_k(v_i) \geq 0\}}\]

strongly in $(E_\psi(\Omega))^N$ by using Lemma 2.12 while $\nabla T_k(u_n) \rightharpoonup \nabla T_k(u)$ weakly in $(L^p(\Omega))^N$ for $\sigma(\Pi L_p, \Pi E_\psi)$.

Letting again $i \to \infty$, one has, since

\[a(x, T_k(u), \nabla T_k(v_i) \chi_i^k) \chi_{\{T_k(u) - T_k(v_i) \geq 0\}} \rightarrow a(x, T_k(u), \nabla T_k(u) \chi_s)\]

strongly in $(E_\psi(\Omega))^N$ by using the modular convergence of v_i and Lebesgue theorem,

\[\int_{\{T_k(u_n) - T_k(v_i) \geq 0\}} \exp(G(T_k(u_n)))a(x, T_k(u_n), \nabla T_k(v_i) \chi_i^k) \nabla T_k(u_n) \, dx\]

\[= \int_{\Omega} \exp(G(u_n))a(x, T_k(u), \nabla T_k(u) \chi_s) \nabla T_k(u) \, dx + \epsilon(n, i, j).\]

In the same way, we have

\[-\int_{\{T_k(u_n) - T_k(v_i) \geq 0\}} \exp(G(T_k(u_n)))a(x, T_k(u_n), \nabla T_k(v_i) \chi_i^k) \nabla T_k(v_i) \chi_i^k h_j(u_n) \, dx\]

\[= - \int_{\Omega} \exp(G(u_n))a(x, T_k(u), \nabla T_k(u) \chi_s) \nabla T_k(u) \chi_s \, dx + \epsilon(n, i, j).\]

Adding the two equalities we conclude that

\[\int_{\{T_k(u_n) - T_k(v_i) \geq 0\}} \exp(G(u_n))a(x, T_k(u_n), \nabla T_k(v_i) \chi_i^k) \times [\nabla T_k(u_n) - \nabla T_k(v_i) \chi_i^k] h_j(u_n) \, dx\]

\[= \epsilon(n, i, j).\]

(62)

Combining (58)–(60) and (62), we then conclude

\[\int_{\{T_k(u_n) - T_k(v_i) \geq 0\}} \left[a(x, T_k(u_n), \nabla T_k(u_n)) - a(x, T_k(u_n), \nabla T_k(v_i) \chi_i^k)\right]\]

\[\times [\nabla T_k(u_n) - \nabla T_k(v_i) \chi_i^k] h_j(u_n) \, dx\]

\[\leq c_{13} \int_{\Omega \setminus \Omega^*} l_k |\nabla T_k(u)| \, dx + \epsilon(n, i, j).\]
Now, taking \(v = u_n + \exp(-G(u_n))(T_k(u_n) - T_k(v_i))^{-1} h_j(u_n) \) as test function \((\mathcal{P}_n)\) and reasoning as in (63) it is possible to conclude that,

\[
\int_{\{T_k(u_n) - T_k(v_i) \leq 0\}} [a(x, T_k(u_n), \nabla T_k(u_n)) - a(x, T_k(u_n), \nabla T_k(v_i)\chi_s^i)] \\
\times [\nabla T_k(u_n)) - \nabla T_k(v_i)\chi_s^i]h_j(u_n) \, dx
\leq c_{14} \int_{\Omega \setminus \Omega^*} l_k |\nabla T_k(u)| \, dx + \epsilon(n, i, j).
\]

Finally by using (63) and (64), we get

\[
\int_{\Omega} [a(x, T_k(u_n), \nabla T_k(u_n)) - a(x, T_k(u_n), \nabla T_k(v_i)\chi_s^i)] \\
\times [\nabla T_k(u_n)) - \nabla T_k(v_i)\chi_s^i]h_j(u_n) \, dx
\leq c_{15} \int_{\Omega \setminus \Omega^*} l_k |\nabla T_k(u)| \, dx + \epsilon(n, i, j).
\]

On the other hand, we have

\[
\int_{\Omega} [a(x, T_k(u_n), \nabla T_k(u_n)) - a(x, T_k(u_n), \nabla T_k(v_i)\chi_s^i)] [\nabla T_k(u_n)) - \nabla T_k(v_i)\chi_s^i]h_j(u_n) \, dx
\]

\[
- \int_{\Omega} [a(x, T_k(u_n), \nabla T_k(u_n)) - a(x, T_k(u_n), \nabla T_k(v_i)\chi_s^i)] [\nabla T_k(u_n)) - \nabla T_k(v_i)\chi_s^i]h_j(u_n) \, dx
\]

\[
= \int_{\Omega} [a(x, T_k(u_n), \nabla T_k(v_i)\chi_s^i)] [\nabla T_k(u_n)) - \nabla T_k(v_i)\chi_s^i]h_j(u_n) \, dx
\]

\[
- \int_{\Omega} [a(x, T_k(u_n), \nabla T_k(u_n))][\nabla T_k(u_n)) - \nabla T_k(u)\chi_s]h_j(u_n) \, dx
\]

\[
+ \int_{\Omega} [a(x, T_k(u_n), \nabla T_k(u_n))] [\nabla T_k(v_i)\chi_s^i - \nabla T_k(u)\chi_s] h_j(u_n) \, dx.
\]

and, as it can be easily seen, each integral of the right-hand side of the form \(\epsilon(n, i, j) \) implying that

\[
\int_{\Omega} [a(x, T_k(u_n), \nabla T_k(u_n)) - a(x, T_k(u_n), \nabla T_k(v_i)\chi_s^i)] \\
[\nabla T_k(u_n)) - \nabla T_k(v_i)\chi_s^i]h_j(u_n) \, dx
\]

\[
= \int_{\Omega} [a(x, T_k(u_n), \nabla T_k(u_n)) - a(x, T_k(u_n), \nabla T_k(v_i)\chi_s^i)] \\
\times [\nabla T_k(u_n)) - \nabla T_k(v_i)\chi_s^i]h_j(u_n) \, dx + \epsilon(n, i, j).
\]
Furthermore, using (65) and (67), we have

\[
\int_\Omega [a(x, T_k(u_n), \nabla T_k(u_n)) - a(x, T_k(u_n), \nabla T_k(u)\chi_s)] \\
\times |\nabla T_k(u_n) - \nabla T_k(u)\chi_s|h_j(u_n) \, dx
\leq c_{10} \int_\Omega j_k |\nabla T_k(u)| \, dx + \epsilon(n, i, j).
\]

(68)

Now, we remark that

\[
\int_\Omega [a(x, T_k(u_n), \nabla T_k(u_n)) - a(x, T_k(u_n), \nabla T_k(u)\chi_s)] \nabla T_k(u_n) - \nabla T_k(u)\chi_s \, dx
\]

\[
= \int_\Omega [a(x, T_k(u_n), \nabla T_k(u_n)) - a(x, T_k(u_n), \nabla T_k(u)\chi_s)] \\
\times |\nabla T_k(u_n) - \nabla T_k(u)\chi_s|h_j(u_n) \, dx
\]

\[
+ \int_\Omega [a(x, T_k(u_n), \nabla T_k(u_n)) - a(x, T_k(u_n), \nabla T_k(u)\chi_s)] \\
\times |\nabla T_k(u_n) - \nabla T_k(u)\chi_s|[1 - h_j(u_n)] \, dx.
\]

(69)

Since \(1 - h_j(u_n) = 0\) in \(\{|u_n(x)| \leq j\}\), then for \(j\) large enough the second term of the right hand side of (69) can be written as follows

\[
\int_\Omega [a(x, T_k(u_n), \nabla T_k(u_n)) - a(x, T_k(u_n), \nabla T_k(u)\chi_s)] \\
\times |\nabla T_k(u_n) - \nabla T_k(u)\chi_s|[1 - h_j(u_n)] \, dx
\]

\[
= - \int_\Omega a(x, T_k(u_n), \nabla T_k(u)\chi_s)|1 - h_j(u_n)| \, dx
\]

\[
+ \int_\Omega a(x, T_k(u_n), \nabla T_k(u)\chi_s)\nabla T_k(u)\chi_s[1 - h_j(u_n)] \, dx.
\]

(70)

Thanks to \(a(x, T_k(u_n), \nabla T_k(u_n))\) is bounded in \((L^\psi(\Omega))^N\) uniformly on \(n\) while \(\nabla T_k(u)\chi_s(1 - h_j(u_n))\) converges to zero strongly in \((L^\psi(\Omega))^N\), hence the first term of the right-hand side of (70) converges to zero as \(n\) goes to infinity.

The second term converges to zero because \(\nabla T_k(u)\chi_s(1 - h_j(u_n)) \rightarrow \nabla T_k(u)\chi_s(1 - h_j(u)) = 0\) strongly in \(E^\psi(\Omega)\) and by the continuity of the Nymetskii operator \(a(x, T_k(u), \nabla T_k(u)\chi_s)\) converges strongly to \(a(x, T_k(u), \nabla T_k(u)\chi_s)\).

Finally, we deduce that

\[
\lim_{n \to \infty} \int_\Omega [a(x, T_k(u_n), \nabla T_k(u_n)) - a(x, T_k(u_n), \nabla T_k(u)\chi_s)] \\
\times |\nabla T_k(u_n) - \nabla T_k(u)\chi_s|[1 - h_j(u_n)] \, dx = 0.
\]

(71)
Combining (68), (69) and (71), we get
\[
\int_{\Omega} [a(x, T_k(u_n), \nabla T_k(u_n)) - a(x, T_k(u_n), \nabla T_k(u) \chi_s)] [\nabla T_k(u_n) - \nabla T_k(u) \chi_s] \, dx \\
\leq c_{\Omega} \int_{\Omega} l_k |\nabla T_k(u)| \, dx + \epsilon(n, i, j).
\] (72)

Letting \(n, i, j \) and \(s \) tend to infinity, we deduce
\[
\int_{\Omega} [a(x, T_k(u_n), \nabla T_k(u_n)) - a(x, T_k(u_n), \nabla T_k(u) \chi_s)] [\nabla T_k(u_n) - \nabla T_k(u) \chi_s] \, dx \to 0
\]
as \(n \to \infty \) and as \(s \to \infty \).

As in [20], we deduce that there exists a subsequence, still denoted by \(u_n \), such that
\[
\nabla u_n \to \nabla u \quad \text{a.e. in } \Omega,
\] (73)
which implies that
\[
a(x, T_k(u_n), \nabla T_k(u_n)) \to a(x, T_k(u), \nabla T_k(u)) \quad \text{weakly in } (L^1(\Omega))^N
\]
for \(\sigma(\Pi L^\psi, \Pi E^\phi), \forall k > 0 \).

Step 4: Equi-integrability of the non-linearities.

We shall prove that \(g_n(x, u_n, \nabla u_n) \to g(x, u, \nabla u) \) strongly in \(L^1(\Omega) \), by using Vitali’s theorem. Since \(g_n(x, u_n, \nabla u_n) \to g(x, u, \nabla u) \) a.e. in \(\Omega \), thanks to (41) and (73), it suffices to prove that \(g_n(x, u_n, \nabla u_n) \) are uniformly equi–integrable in \(\Omega \).

On the one hand, let \(v = u_n + \exp(-G(u_n)) \int_{u_n}^{0} h(s) \chi_{\{s < -\ell\}} \, ds \). Since \(v \in W_0^1 L^\psi(\Omega) \) and \(v \geq \Psi, v \) is an admissible test function in \((\mathcal{P}_n) \). Then, we obtain by using (20), that
\[
\int_{\Omega} a(x, u_n, \nabla u_n) \nabla u_n \frac{h(u_n)}{\alpha} \exp(-G(u_n)) \int_{u_n}^{0} h(s) \chi_{\{s < -\ell\}} \, ds \, dx \\
+ \int_{\Omega} a(x, (u_n), \nabla u_n) \nabla u_n \exp(-G(u_n)) h(u_n) \chi_{\{s < -\ell\}} \, dx \\
\leq \int_{\Omega} \rho(x) \exp(-G(u_n)) \int_{u_n}^{0} h(s) \chi_{\{s < -\ell\}} \, ds \, dx \\
+ \int_{\Omega} h(x) \varphi(x, |\nabla u_n|) \exp(-G(u_n)) \int_{u_n}^{0} h(s) \chi_{\{s < -\ell\}} \, ds \, dx \\
- \int_{\Omega} f_n \exp(-G(u_n)) \int_{u_n}^{0} h(s) \chi_{\{s < -\ell\}} \, ds \, dx.
\]
Using (18) and since \(\int_{u_n}^0 h(s) \chi_{\{s < -\ell\}} \, ds \leq \int_{-\infty}^{-\ell} h(s) \, ds \), we get

\[
\int_{\Omega} a(x, u_n, \nabla u_n) \nabla \chi_{\{u_n < -\ell\}} (s) \, ds \leq \int_{-\infty}^{-\ell} h(s) \, ds \, dx \leq \exp \left(\frac{||h||_{L^1(\mathbb{R})}}{\alpha} \right) \int_{-\infty}^{-\ell} h(s) \, ds \left(||\rho||_{L^1(\Omega)} + ||f_n||_{L^1(\Omega)} \right).
\]

Using again (18), we obtain

\[
\int_{\{u_n < -\ell\}} h(x) \varphi(x, |\nabla u_n|) \, dx \leq c_{17} \int_{-\infty}^{-\ell} h(s) \, ds.
\]

And since \(h \in L^1(\mathbb{R}) \), we deduce that,

\[
\lim_{\ell \to \infty} \sup_{n \in \mathbb{N}} \int_{\{u_n < -\ell\}} h(x) \varphi(x, |\nabla u_n|) \, dx = 0. \tag{75}
\]

On the other hand, let \(M = \exp(||h||_{L^1(\mathbb{R})}) \int_0^\infty h(s) \, ds \) and \(\ell \geq M + ||v_0||_{L^\infty(\Omega)} \).

Consider \(v = u_n - \exp(G(u_n)) \int_{u_n}^\infty h(s) \chi_{\{s > \ell\}} \, ds \). Since \(v \in W_0^1 L^\infty(\Omega) \) and \(v \geq \Psi \), \(v \) is an admissible test function in \((P_n)\). Then, similarly to (75), we deduce that

\[
\lim_{\ell \to \infty} \sup_{n \in \mathbb{N}} \int_{\{u_n > \ell\}} h(x) \varphi(x, |\nabla u_n|) \, dx = 0. \tag{76}
\]

Combining (73), (75) and (76) and Vitali’s Theorem, we conclude that \(g(x, u, \nabla u) \in L^1(\Omega) \) and we can easily to see that

\[
g_n(x, u_n, \nabla u_n) \longrightarrow g(x, u, \nabla u) \quad \text{strongly in } L^1(\Omega). \tag{77}
\]

Step 5: Passing to the limit.

Let \(v \in K_\Psi \cap W_0^1 L^\infty(\Omega) \cap L^\infty(\Omega) \), we take \(u_n - T_k(u_n - v) \) as test function in \((P_n)\), we can write

\[
\int_{\Omega} a(x, u_n, \nabla u_n) \nabla T_k(u_n - v) \, dx + \int_{\Omega} \Phi_n(u_n) \nabla T_k(u_n - v) \, dx \]
\[
+ \int_{\Omega} g_n(x, u_n, \nabla u_n) T_k(u_n - v) \, dx \leq \int_{\Omega} f_n T_k(u_n - v) \, dx,
\]

\[\text{(78)}\]

Revista Colombiana de Matemáticas
which implies that

\[
\int_{\{|u_n - v| \leq k\}} a(x, u_n, \nabla u_n) \nabla u_n \, dx \\
- \int_{\{|u_n - v| \leq k\}} a(x, T_{k+||v||_\infty} u_n), \nabla T_{k+||v||_\infty} u_n) \nabla v \, dx \\
+ \int_{\Omega} \Phi_n(T_{k+||v||_\infty} u_n) \nabla T_k(u_n - v) \, dx \\
+ \int_{\Omega} g_n(x, u_n, \nabla u_n) T_k(u_n - v) \, dx \\
\leq \int_{\Omega} f_n T_k(u_n - v) \, dx.
\] (79)

By Fatou’s lemma and the fact that

\[
a(x, T_{k+||v||_\infty} u_n), \nabla T_{k+||v||_\infty} u_n) \rightarrow a(x, T_{k+||v||_\infty} u), \nabla T_{k+||v||_\infty} u)\]

weakly in \((L_\psi(\Omega))^N\) for \(\sigma(\Pi L_\psi, \Pi E_\psi)\), one easily sees that

\[
\int_{\{|u_n - v| \leq k\}} a(x, T_{k+||v||_\infty} u_n), \nabla T_{k+||v||_\infty} u_n) \nabla T_{k+||v||_\infty} u_n) \, dx \\
- \int_{\{|u_n - v| \leq k\}} a(x, T_{k+||v||_\infty} u_n), \nabla T_{k+||v||_\infty} u_n) \nabla v \, dx \\
\geq \int_{\{|u - v| \leq k\}} a(x, T_{k+||v||_\infty} u), \nabla T_{k+||v||_\infty} u) \nabla T_{k+||v||_\infty} u) \, dx \\
- \int_{\{|u - v| \leq k\}} a(x, T_{k+||v||_\infty} u), \nabla T_{k+||v||_\infty} u) \nabla v \, dx.
\] (80)

Furthermore, for \(n\) large enough \((n > k + ||v||_\infty)\)

\[
\int_{\Omega} \Phi_n(T_{k+||v||_\infty} u_n) \nabla T_k(u_n - v) \, dx = \int_{\Omega} \Phi_n(T_{k+||v||_\infty} u_n) \nabla T_k(u - v) \, dx \\
= \int_{\Omega} \Phi(T_{k+||v||_\infty} u_n) \nabla T_k(u - v) \, dx \\
\rightarrow \int_{\Omega} \Phi(T_k(u)) \nabla T_k(u - v) \, dx.
\] (81)

Since \(T_k(u_n - v) \rightarrow T_k(u - v)\) weakly in \(L_\infty(\Omega)\) as \(n \rightarrow \infty\) we have

\[
\int_{\Omega} g_n(x, u_n, \nabla u_n) T_k(u_n - v) \, dx \rightarrow \int_{\Omega} g(x, u, \nabla u) T_k(u - v) \, dx \text{ as } n \rightarrow \infty, \] (82)
and
\[
\int \nabla T_k(u_n - v) \, dx \to \int \nabla T_k(u_n - v) \, dx \text{ as } n \to \infty. \tag{83}
\]

Combining (79)–(83), we have
\[
\int a(x, u, \nabla u) \nabla T_k(u - v) \, dx + \int \Phi(u) \nabla T_k(u - v) \, dx \\
+ \int g(x, u, \nabla u) T_k(u - v) \, dx \leq \int f T_k(u - v) \, dx. \tag{84}
\]

Now, let \(v \in K_\Psi \cap L^\infty(\Omega) \) by condition (21) there exists \(v_j \in K_\Psi \cap W_0^{1,\infty}(\Omega) \) such that \(v_j \) converges to \(v \) modular, let \(\ell > \max(||v_0||_\infty, ||v||_\infty) \), taking \(v = T_\ell(v_j) \) in (84), we have
\[
\int a(x, u, \nabla u) \nabla T_k(u - T_\ell(v_j)) \, dx + \int \Phi(u) \nabla T_k(u - T_\ell(v_j)) \, dx \\
+ \int g(x, u, \nabla u) T_k(u - T_\ell(v_j)) \, dx \leq \int f T_k(u - T_\ell(v_j)) \, dx. \tag{85}
\]

We can easily pass to the limit as \(j \to +\infty \) to get
\[
\int a(x, u, \nabla u) \nabla T_k(u - T_\ell(v)) \, dx + \int \Phi(u) \nabla T_k(u - T_\ell(v)) \, dx \\
+ \int g(x, u, \nabla u) T_k(u - T_\ell(v)) \, dx \leq \int f T_k(u - T_\ell(v)) \, dx, \quad \forall v \in K_\Psi \cap L^\infty(\Omega). \tag{86}
\]

Finally, letting \(\ell > \max(||v_0||_\infty, ||v||_\infty) \) to the infinity we deduce
\[
\int a(x, u, \nabla u) \nabla T_k(u - v) \, dx + \int \Phi(u) \nabla T_k(u - v) \, dx \\
+ \int g(x, u, \nabla u) T_k(u - v) \, dx = \int f T_k(u - v) \, dx, \forall v \in K_\Psi \cap L^\infty(\Omega) \text{ and } \forall k > 0.
\]

Thus the proof of Theorem 3.1 is complete.
References

Volumen 55, Número 1, Año 2021

(Recibido en abril de 2020. Aceptado en marzo de 2021)
Laboratoire MISI
Laboratoire MISI, FST Settat,
Univ. Hassan I, 26000 Settat, Morocco

e-mail: talha.abdous@gmail.com

Department of Mathematics
University of Nouakchott Al Aasriya
Professional University Institute,
Department of Mathematics, Research unity:
Modelling and Scientific Calculus
Nouakchott, Mauritania.

e-mail: saad2012bouh@gmail.com