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Resumen. En este art́ıculo, demostramos la existencia de soluciones a un pro-
blema diferencial eĺıptico que contiene dos términos de bajo orden, donde el
primer término no lineal satisface condiciones de crecimiento sin restricciones
en el signo y el segundo es una función continua sobre R.

Palabras y frases clave. desigualdad de Poincaré, espacios Musielak-Orlicz-Sobo-
lev, problemas unilaterales, obstáculo medible, Término de orden inferior.

1. Introduction

In the present paper, we deal with an existence result for a nonlinear elliptic
unilateral problems associated to the following equation:

A(u)− div(Φ(u)) + g(x, u,∇u) = f in Ω, (1)

43



44 ABDESLAM TALHA & MOHAMED SAAD BOUH ELEMINE VALL

where Ω is a bounded Lipchitz open subset of RN (N ≥ 2) which satisfies
the segment propierty and A(u) = −div a(x, u,∇u) is a Leray-Lions operator
defined on A : D(A) ⊂W 1

0Lϕ(Ω) −→W−1Lψ(Ω) where ϕ and ψ are two com-
plementary Musielak-Orlicz functions. The lower order term Φ is a continuous
function on R, g is a nonlinearity with the following natural growth condition:

|g(x, s, ξ)| ≤ b(|s|)
(
c(x) + ϕ(x, |ξ|)

)
(2)

and which satisfies the classical sign condition g(x, s, ξ)s ≥ 0, and the right
hand side f is assumed to belong to L1(Ω).

On Orlicz spaces and in the variational case, it is well known that Gossez
and Mustonen solved in [15] the following obstacle problem:

u ∈ Kφ,

〈A(u), u− v〉+

∫
Ω

g(x, u)(u− v) dx ≤
∫

Ω

f(u− v) dx,

for all v ∈ Kφ ∩ L∞(Ω),

(3)

with f ∈ L1(Ω) and Kφ is a convex subset in W 1
0LM (Ω) given by Kφ =

{v ∈W 1
0LM (Ω) : v ≥ φ a.e in Ω}, with the obstacle φ is a measurable function

satisfying some regularity condition. An existence result has been proved in [1]
by Aharouch, Benkirane and Rhoudaf where the non-linearity g depend on x, u
and ∇u and without assuming the ∆2-condition on the N-function and also in
[2] the authors were studied the problem (1) in the case where the non-linearity
g depends only on x and u under the restriction that the N-function satisfies
the ∆2-condition.

In the framework of variable exponent Sobolev spaces, Azroul, Redwane and
Yazough in [4] have shown the existence of solutions for the unilateral problem
associated to (1) where Φ ≡ 0 and the second member f is a integrable function,
for more results in this topic see [5, 19].

In the setting of Musielak-Orlicz spaces and in the case where Φ ≡ 0,
Benkirane and Ait Khellou [20] proved the existence of solutions for the obstacle
problem (1), they generalized the work of Gossez and Mustonen in [15].

The study of the nonlinear partial differential equations in this type of
spaces is strongly motivated by numerous phenomena of physics, namely the
problems related to non-Newtonian fluids of strongly inhomogeneous behavior
with a high ability of increasing their viscosity under a different stimulus, like
the shear rate, magnetic or electric field. The generalized Orlicz (Musielak-
Orlicz) spaces are of interest not only as the natural generalization of these
important examples, but also in their own right. They have appeared in many
problems in PDEs and the calculus of variations [3, 12] and have applications
to image processing [11, 18] and fluid dynamics [16, 17].
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Our purpose in this paper, then, is to study the strongly nonlinear unilateral
problems associated to the equation (1) but without assuming any sign condi-
tion and any regularity on the obstacle. More precisely, we prove the existence
of solutions for the following unilateral problem:

(P)



u ≥ Ψ a.e. in Ω, Tk(u− v) ∈W 1
0Lϕ(Ω), g(x, u,∇u) ∈ L1(Ω),∫

Ω

a(x, u,∇u)∇Tk(u− v) dx+

∫
Ω

Φ(u)∇Tk(u− v) dx

+

∫
Ω

g(x, u,∇u)Tk(u− v) dx ≤
∫

Ω

fTk(u− v) dx,

for all v ∈ KΨ ∩ L∞(Ω), ∀k ≥ 0.

where f ∈ L1(Ω) and KΨ =
{
u ∈ W 1

0Lϕ(Ω) : u ≥ Ψ a.e. in Ω
}

, with Ψ a
measurable function on Ω.

To overcome this difficulty (due to the elimination of the sign condition) in
the present paper, we modify the condition (2) by the following one

|g(x, s, ξ)| ≤ c(x) + h(s)ϕ(x, |ξ|),

the model problem is to consider

g(x, u,∇u) = c(x) + |sin u|e−u
2

ϕ(x, |∇u|),

where c(x) ∈ L1(Ω).

Further works for the unilateral problem corresponding to (1) in the Lp case
can be found in [10, 9, 22, 23].

This research is divided into several parts: In Section 2, we recall some well-
known preliminaries, properties and results of Orlicz-Sobolev spaces. In Section
2.3, we prepare some auxiliary results to prove our theorem. In the final Section
3, we make precise all the assumptions on a(.), Φ, g and f , we also give the
main result of this paper (Theorem 3.1) concerning the existence of solutions.

2. Preliminaries

2.1. Musielak-Orlicz function:

Let Ω be an open set in RN and let ϕ be a real-valued function defined in
Ω× R+ and satisfying the following conditions:

(a) ϕ(x, ·) is an N-function for all x ∈ Ω (i.e. convex, strictly increasing,

continuous, ϕ(x, 0) = 0, ϕ(x, t) > 0, for all t > 0, lim
t→0

sup
x∈Ω

ϕ(x, t)

t
= 0 and

lim
t→∞

inf
x∈Ω

ϕ(x, t)

t
=∞),

(b) ϕ(·, t) is a measurable function.
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The function ϕ is called a Musielak–Orlicz function.

For a Musielak-orlicz function ϕ we put ϕx(t) = ϕ(x, t) and we associate
its nonnegative reciprocal function ϕ−1

x , with respect to t, that is

ϕ−1
x (ϕ(x, t)) = ϕ(x, ϕ−1

x (t)) = t.

The Musielak-orlicz function ϕ is said to satisfy the ∆2-condition if for some
k > 0, and a non negative function h, integrable in Ω, we have

ϕ(x, 2t) ≤ k ϕ(x, t) + h(x) for all x ∈ Ω and t ≥ 0. (4)

When (4) holds only for t ≥ t0 > 0, then ϕ is said to satisfy the ∆2-condition
near infinity.

Let ϕ and γ be two Musielak-orlicz functions, we say that ϕ dominate γ
and we write γ ≺ ϕ, near infinity (resp. globally) if there exist two positive
constants c and t0 such that for almost all x ∈ Ω

γ(x, t) ≤ ϕ(x, ct) for all t ≥ t0, ( resp. for all t ≥ 0 i.e. t0 = 0).

We say that γ grows essentially less rapidly than ϕ at 0 (resp. near infinity)
and we write γ ≺≺ ϕ if for every positive constant c we have

lim
t−→0

(
sup
x∈Ω

γ(x, ct)

ϕ(x, t)

)
= 0, (resp. lim

t−→∞

(
sup
x∈Ω

γ(x, ct)

ϕ(x, t)

)
= 0).

Remark 2.1. [8] If γ ≺≺ ϕ near infinity, then ∀ε > 0 there exist k(ε) > 0
such that for almost all x ∈ Ω we have

γ(x, t) ≤ k(ε)ϕ(x, εt), for all t ≥ 0. (5)

2.2. Musielak-Orlicz space:

For a Musielak-Orlicz function ϕ and a measurable function u : Ω −→ R, we
define the functional

ρϕ,Ω(u) =

∫
Ω

ϕ(x, |u(x)|) dx.

The set Kϕ(Ω) =
{
u : Ω −→ R measurable / ρϕ,Ω(u) < ∞

}
is called the

Musielak-Orlicz class (or generalized Orlicz class). The Musielak-Orlicz space
(the generalized Orlicz spaces) Lϕ(Ω) is the vector space generated by Kϕ(Ω),
that is, Lϕ(Ω) is the smallest linear space containing the set Kϕ(Ω). Equiva-
lently

Lϕ(Ω) =
{
u : Ω −→ R measurable

/
ρϕ,Ω

(u
λ

)
<∞, for some λ > 0

}
.
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For a Musielak-Orlicz function ϕ we put: ψ(x, s) = supt≥0 {st− ϕ(x, t)},
ψ is the Musielak-Orlicz function complementary to ϕ (or conjugate of ϕ)

in the sens of Young with respect to the variable s.

In the space Lϕ(Ω) we define the following two norms:

‖u‖ϕ,Ω = inf

{
λ > 0/

∫
Ω

ϕ
(
x,
|u(x)|
λ

)
dx ≤ 1

}
,

which is called the Luxemburg norm and the so–called Orlicz norm by

‖|u|‖ϕ,Ω = sup
‖v‖ψ≤1

∫
Ω

|u(x)v(x)| dx,

where ψ is the Musielak Orlicz function complementary to ϕ. These two norms
are equivalent [21].

We will also use the space Eϕ(Ω) defined by

Eϕ(Ω) =
{
u : Ω −→ R measurable

/
ρϕ,Ω

(u
λ

)
<∞, for all λ > 0

}
.

A Musielak function ϕ is called locally integrable on Ω if ρϕ(tχE) <∞ for all
t > 0 and all measurable E ⊂ Ω with meas(E) <∞.

Let ϕ a Musielak function which is locally integrable. Then Eϕ(Ω) is sepa-
rable [21].

We say that sequence of functions un ∈ Lϕ(Ω) is modular convergent to
u ∈ Lϕ(Ω) if there exists a constant λ > 0 such that

lim
n→∞

ρϕ,Ω

(un − u
λ

)
= 0.

For any fixed nonnegative integer m we define

WmLϕ(Ω) =

{
u ∈ Lϕ(Ω) : ∀|α| ≤ m, Dαu ∈ Lϕ(Ω)

}
and

WmEϕ(Ω) =

{
u ∈ Eϕ(Ω) : ∀|α| ≤ m, Dαu ∈ Eϕ(Ω)

}
where α = (α1, . . . , αn) with nonnegative integers αi, |α| = |α1| + · · · + |αn|
and Dαu denote the distributional derivatives. The space WmLϕ(Ω) is called
the Musielak Orlicz Sobolev space.

Lemma 2.2. (See [21]). Let

ρϕ,Ω(u) =
∑
|α|≤m

ρϕ,Ω

(
Dαu

)
and ‖u‖mϕ,Ω = inf

{
λ > 0 : ρϕ,Ω

(u
λ

)
≤ 1
}

for u ∈ WmLϕ(Ω), these functionals difined a convex modular and a norm
respectively on the Sobolev-Orlicz-Musielak space WmLϕ(Ω).
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Let us move to the completeness of the Sobolev-Orlicz-Musielak spaceWmLϕ(Ω).

Lemma 2.3. (See [21]). Let ϕ a Musielak function such that

there exist a constant c0 > 0 such that inf
x∈Ω

ϕ(x, 1) ≥ c0. (6)

Then, the space
(
WmLϕ(Ω), ‖‖mϕ,Ω

)
is a Banach space.

The space WmLϕ(Ω) will always be identified to a subspace of the product∏
|α|≤m Lϕ(Ω) = ΠLϕ, this subspace is σ(ΠLϕ,ΠEψ) closed.

The space Wm
0 Lϕ(Ω) is defined as the σ(ΠLϕ,ΠEψ) closure of D(Ω) in

WmLϕ(Ω). and the space Wm
0 Eϕ(Ω) as the (norm) closure of the Schwartz

space D(Ω) in WmLϕ(Ω).

Let Wm
0 Lϕ(Ω) be the σ(ΠLϕ,ΠEψ) closure of D(Ω) in WmLϕ(Ω).

The following spaces of distributions will also be used:

W−mLψ(Ω) =

{
f ∈ D′(Ω); f =

∑
|α|≤m

(−1)|α|Dαfα with fα ∈ Lψ(Ω)

}
.

and

W−mEψ(Ω) =

{
f ∈ D′(Ω); f =

∑
|α|≤m

(−1)|α|Dαfα with fα ∈ Eψ(Ω)

}
.

We introduce the following type of convergence which plays an important role
in the proof of our results.

Definition 2.4. A sequence of functions un ∈WmLϕ(Ω) is said to be conver-
gent for the modular convergece to u ∈ WmLϕ(Ω) if there exists a constant
k > 0 such that

lim
n→∞

ρϕ,Ω

(un − u
k

)
= 0.

Now, we give the following key inequalities.

Lemma 2.5. (See [21]). Let ϕ a Musielak-Orlicz function and ψ its comple-
mentary function. Then, we have

ts ≤ ϕ(x, t) + ψ(x, s), ∀t, s ≥ 0, x ∈ Ω. (7)

This inequality implies that

‖|u|‖ϕ,Ω ≤ ρϕ,Ω(u) + 1. (8)

We have also the relations between the norm and the modular in Lϕ(Ω)

‖u‖ϕ,Ω ≤ ρϕ,Ω(u) if ‖u‖ϕ,Ω > 1, (9)
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‖u‖ϕ,Ω ≥ ρϕ,Ω(u) if ‖u‖ϕ,Ω ≤ 1. (10)

Finally, we give the so called Hölder inequality∣∣∣∣∫
Ω

u(x)v(x) dx

∣∣∣∣ ≤ ‖u‖ϕ,Ω‖|v|‖ψ,Ω. (11)

2.3. Auxiliary results

This subsection is devoted to some auxiliary lemmas and key inequalities used
later in the prove of our results.

Lemma 2.6. (See [24]). Let Ω be a bounded Lipschitz domain in RN and let
ϕ and ψ be two complementary Musielak–Orlicz functions which satisfy the
following conditions:

There exist a constant c0 > 0 such that infx∈Ω ϕ(x, 1) ≥ c0. There exist a
constant A > 0 such that for all x, y ∈ Ω with |x− y| ≤ 1

2 we have

ϕ(x, t)

ϕ(y, t)
≤ t

(
A

log( 1
|x−y|

)
, ∀, for all t ≥ 1. (12)

If D ⊂ Ω is a bounded measurable set, then∫
D

ϕ(x, λ) dx <∞, for all λ > 0. (13)

There exist a constant c2 > 0 such that ψ(x, 1) ≤ c2 a.e in Ω.

Then, D(Ω) is dense in the both spaces Lϕ(Ω) and W 1
0Lϕ(Ω) for their

modular convergence and D(Ω) is dense in W 1Lϕ(Ω) the modular convergence
in W 1Lϕ(Ω).

Consequently, the action of a distribution S in W−1Lψ(Ω) on an element u
of W 1

0Lϕ(Ω) is well defined. It will be denoted by < S, u >.

Lemma 2.7. [7] Let F : R −→ R be uniformly Lipschitzian, with F (0) = 0. Let
ϕ be a Musielak–Orlicz function and let u ∈W 1

0Lϕ(Ω). Then F (u) ∈W 1
0Lϕ(Ω).

Moreover, if the set D of discontinuity points of F ′ is finite, we have

∂

∂xi
F (u) =

{
F ′(u) ∂u∂xi a.e in {x ∈ Ω : u(x) ∈ D}

0 a.e in {x ∈ Ω : u(x) 6∈ D}.

Lemma 2.8 (Poincaré inequality). (See [24]). Let ϕ a Musielak Orlicz function
which satisfies the assumptions of Lemma 2.6, suppose that ϕ(x, t) decreases
with respect of one of coordinate of x. Then, that exists a constant c > 0 depends
only of Ω such that∫

Ω

ϕ(x, |u(x)|) dx ≤
∫

Ω

ϕ(x, c|∇u(x)|) dx, ∀u ∈W 1
0Lϕ(Ω). (14)

Revista Colombiana de Matemáticas
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Lemma 2.9. Let un, u ∈ Lϕ(Ω). If un → u with respect to the modular con-
vergence, then un → u for σ(Lϕ(Ω), Lψ(Ω)).

Proof. Let λ > 0 be such that

∫
Ω

ϕ(x,
un − u
λ

)→ 0. Thus, for a subsequence,

un → u a.e. in Ω. Take v ∈ Lψ(Ω). Multiplying v by a suitable constant, we
can assume λv ∈ Lψ(Ω). By young’s inequality,

|(un − u)v| ≤ ϕ(x,
un − u
λ

) + ψ(x, λv),

which implies, by Vitali’s theorem, that

∫
Ω

|(un − u)v| → 0. �X

Lemma 2.10. (See [7]). Let Ω be a bounded open subset of RN which satisfies
the segment property and let u ∈ W 1

0Lϕ(Ω). Then, there exists a sequence
(un) ⊂ D(Ω) such that

un → u for modular convergence in W 1
0Lϕ(Ω).

Furthermore, if u ∈W 1
0Lϕ(Ω) ∩ L∞(Ω) then ||un||∞ ≤ (N + 1)||u||∞.

Lemma 2.11. (See [6]). Let Ω be an open bounded subset of RN satisfying the
segment property. If u ∈ (W 1

0Lϕ(Ω))N then∫
Ω

div u dx = 0.

Lemma 2.12. (See [20]) Let Ω be an open subset of RN with finite measure
and let ϕ and ψ be two Musielak Orlicz functions. Let f : Ω× Rp −→ Rq be a
Carathodory function such that for a.e. x ∈ Ω and all s ∈ Rp :

|f(x, s)| ≤ c(x) + k1ψ
−1
x ϕ(x, k2|s|). (15)

where k1 and k2 are real positives constants and c(.) ∈ Eψ(Ω).

Then the Nemytskii Operator Nf defined by Nf (u)(x) = f(x, u(x)) is con-
tinuous from(

P(Eϕ(Ω),
1

k2
)

)p
=
∏{

u ∈ Lϕ(Ω) : d(u,Eϕ(Ω)) <
1

k2

}
.

into (Lψ(Ω))q for the modular convergence.

Furthermore if c(·) ∈ Eγ(Ω) and γ ≺≺ ψ then Nf is strongly continuous

from

(
P(Eϕ(Ω), 1

k2
)

)p
to (Eγ(Ω))q.
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3. Assumptions and main result

Throughout the paper, Ω will be a bounded Lipschitz subset of RN N ≥ 2, and
let ϕ and γ two Musielak Orlicz functions such that ϕ satisfies the conditions
of Lemma 2.8 and γ ≺≺ ϕ.

Given an obstacle measurable function Ψ : Ω −→ R, consider the set

KΨ =
{
u ∈W 1

0Lϕ(Ω) : u ≥ Ψ a.e. in Ω
}
.

This convex set is sequentially σ(ΠLϕ,ΠEψ) closed in W 1
0Lϕ(Ω) (see [8]).

Let A : D(A) ⊂W 1
0Lϕ(Ω) −→W−1Lψ(Ω) be a mapping given by

A(u) = − div a(x, u,∇u),

where ψ is the Musielak–Orlicz function complementary to ϕ and a : Ω× R×
RN −→ RN is a Carathéodory function satisfying, for a.e. x ∈ Ω and for all
s ∈ R and all ξ, ξ′ ∈ RN , ξ 6= ξ′:

|a(x, s, ξ)| ≤ β
(
c(x) + ψ−1

x γ(x, ν|s|) + ψ−1
x ϕ(x, ν|ξ|)

)
, (16)

(
a(x, s, ξ)− a(x, s, ξ′)

)
(ξ − ξ′) > 0, (17)

a(x, s, ξ).ξ ≥ αϕ(x, |ξ|), (18)

where c(.) belongs to Eψ(Ω), c(.) ≥ 0 and α, β, ν ∈ R∗+.

Φ : R −→ RN is a continuous function. (19)

Furthermore, let g(x, s, ξ) : Ω×R×RN −→ R be a Caratheodory function such
that for a.e. x ∈ Ω and for all s ∈ R, ξ ∈ RN , the following growth condition

|g(x, s, ξ)| ≤ ρ(x) + h(s)ϕ(x, |ξ|), (20)

is satisfied, where h : R −→ R+ is a continuous positive function which belongs
to L1(R) and ρ(x) belongs L1(Ω).

For each v ∈ KΨ ∩ L∞(Ω), there exists a sequence

vn ∈ KΨ ∩ W 1
0Eϕ(Ω) ∩ L∞(Ω) such that

vn −→ v for the modular convergence.

(21)

Finally, we assume that

KΨ ∩ L∞(Ω) 6= ∅ (22)

f is an element of L1(Ω). (23)
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We define:

T 1,ϕ
0 (Ω) =

{
u : Ω −→ R measurable such that Tk(u) ∈W 1

0Lϕ(Ω) ∀k ≥ 0
}
,

where Tk : R −→ R is the truncation at height k defined by:

Tk(s) =

{
s if |s| ≤ k,
k s
|s| if |s| > k.

(24)

The aim of this paper is to prove the following existence result:

Theorem 3.1. Assume that the assumptions (16)–(23) hold true, then there
exists u ∈ T 1,ϕ

0 (Ω) such that u ≥ Ψ and∫
Ω

a(x, u,∇u)∇Tk(u− v) dx+

∫
Ω

Φn(u)∇Tk(u− v) dx

+

∫
Ω

g(x, u,∇u)Tk(u− v) dx ≤
∫

Ω

fTk(u− v) dx,

for all v ∈ KΨ ∩ L∞(Ω), ∀k ≥ 0.

The proof of Theorem 3.1 is done in 5 steps.

Step 1: Approximate problem.

For n ∈ N∗, let fn be regular functions which strongly converge to f in L1(Ω)
such that ||fn||1 ≤ c for some constant c and Φn is a Lipschitz continuous
bounded function from R into RN and set gn(x, s, ξ) = g(x, Tn(s), ξ).

Consider the approximate unilateral problem:

(Pn)



un ∈ KΨ ∩D(A)∫
Ω

a(x, un,∇un)∇Tk(un − v) dx+

∫
Ω

Φ(un)∇Tk(un − v) dx

+

∫
Ω

g(x, un,∇un)Tk(un − v) dx ≤
∫

Ω

fnTk(un − v) dx,

for all v ∈ KΨ.

For fixed n > 0, it’s obvious to observe that gn(x, s, ξ)ξ ≥ 0, |gn(x, s, ξ)| ≤
|g(x, s, ξ)| and |gn(x, s, ξ)| ≤ n, Since gn is bounded for any fixed n, as a
consequence, proving of a weak solution un ∈W 1

0Lϕ(Ω) of (Pn) is an easy task
(see e.g. [8, Theorem 8], [15, Proposition 1]).

Step 2 : A priori estimates.
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The estimates derived in this step rely on usual techniques for problems of the
type (Pn).

By (21) and (22), there exists v0 ∈ KΨ ∩ W 1
0Eϕ(Ω) ∩ L∞(Ω).

For η small enough, let v = un − η exp(G(un))Tk(un − v0)+ where G(s) =∫ s
0
h(r)
α dr (the function h appears in (20)), choosing v as test function in prob-

lem (Pn), we have∫
Ω

a(x, un,∇un)∇(exp(G(un))Tk(un − v0)+) dx

+

∫
Ω

Φn(un)∇(exp(G(un))Tk(un − v0)+) dx

+

∫
Ω

gn(x, un,∇un) exp(G(un))Tk(un − v0)+ dx

≤
∫

Ω

fn exp(G(un))Tk(un − v0)+ dx.

(25)

Defining Φ̃n(t) =
∫ t

0
Φn(τ)∇(exp(G(un))Tk(un − v0)+)dτ , one has Φ̃n(0) = 0.

As each component of Φ̃n is uniformly Lipschitz continuous, the Lemma 2 in
[14] ensures that the function Φ̃n(un) belongs to (W 1

0Lϕ(Ω))N . So that by
Lemma 2.11, we obtain∫

Ω

Φn(un)∇un dx =

∫
Ω

div
(
Φ̃n(un)

)
= 0 dx.

Moreover, from (20), one gets∫
Ω

a(x, un,∇un)∇(Tk(un − v0)+) exp(G(un)) dx

+

∫
Ω

a(x, un,∇un)∇un
h(un)

α
exp(G(un))Tk(un − v0)+ dx

≤
∫

Ω

h(un)ϕ(x, |∇un|) exp(G(un))Tk(un − v0)+ dx

+

∫
Ω

(
fn + ρ(x)

)
exp(G(un))Tk(un − v0)+ dx.

(26)

By using (18) and the fact that ||fn||L1(Ω) ≤ ||f ||L1(Ω), ρ ∈ L1(Ω), we have∫
{0≤un−v0≤k}

a(x, un,∇un)∇un exp(G(un)) dx

≤
∫
{0≤un−v0≤k}

a(x, un,∇un)∇v0 exp(G(un)) dx+ c1

≤ c
∫
{0≤un−v0≤k}

a(x, un,∇un)
∇v0

c
exp(G(un)) dx+ c1,

(27)
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where c1 is a positive constant independent of n and 0 < c < 1.

Using (17), we have

∫
{0≤un−v0≤k}

a(x, un,∇un)∇un exp(G(un)) dx

≤ c
{∫
{0≤un−v0≤k}

a(x, un,∇un)∇un exp(G(un)) dx

−
∫
{0≤un−v0≤k}

a
(
x, un,

∇v0

c

)(
∇un −

∇v0

c

)
exp(G(un)) dx+c1

}
,

(28)

which implies that,

(1− c)
∫
{0≤un−v0≤k}

a(x, un,∇un)∇un exp(G(un)) dx

≤ c
∫
{0≤un−v0≤k}

∣∣∣a(x, un, ∇v0

c

)∣∣∣ ∣∣∣(∇un − ∇v0

c

)∣∣∣ exp(G(un)) dx+ c1

≤ c
∫
{0≤un−v0≤k}

∣∣∣a(x, un, ∇v0

c

)∣∣∣ ∣∣∣∇v0

c

∣∣∣ exp(G(un)) dx

+ c

∫
{0≤un−v0≤k}

∣∣∣a(x, un, ∇v0

c

)∣∣∣ ∣∣∣∇un∣∣∣ exp(G(un)) dx+ c1.

(29)

Since ∇v0

c ∈ (Eϕ(Ω))N , then by using the Young’s inequality and the condition
(16) we have,

(1− c)
∫
{0≤un−v0≤k}

a(x, un,∇un)∇un exp(G(un)) dx

≤ α(1− c)
2

∫
{0≤un−v0≤k}

ϕ(x, |∇un|) exp(G(un)) dx+ c2(k),

(30)

where c2(k) is a positive constant which depends only on k.

Finally, from (17), we can conclude that,∫
{0≤un−v0≤k}

ϕ(x, |∇un|) exp(G(un)) dx ≤ c3(k). (31)

Since exp(G(−∞)) ≤ exp(G(un)) ≤ exp(G(+∞)) and exp(G(±∞)) ≤
exp

( ||h||L1(Ω)

α

)
, we get∫

{0≤un−v0≤k}
ϕ(x, |∇un|) dx ≤ c4(k). (32)
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Similarly, taking v = un + exp(−G(un))Tk(un − v0)− as test function in (Pn),
we obtain

(1−c)
∫
{−k≤un−v0≤0}

a(x, un,∇un)∇un exp(−G(un) dx

≤ α(1− c)
2

∫
{−k≤un−v0≤0}

ϕ(x, |∇un|) exp(−G(un)dx+c5(k),

(33)

and then ∫
{−k≤un−v0≤0}

ϕ(x, |∇un|) dx ≤ c6(k). (34)

Combining (32) and (34), we deduce that,∫
{|un−v0|≤k}

ϕ(x, |∇un|) dx ≤ c7(k). (35)

Since {x ∈ Ω; |un| ≤ k} ⊂ {x ∈ Ω; |un − v0| ≤ k + ||v0||∞},∫
Ω

ϕ(x, |∇Tk(un)|) dx =

∫
{|un|≤k}

ϕ(x, |∇un|) dx

≤
∫
{|un−v0|≤k+||v0||∞}

ϕ(x, |∇un|) dx,

thus ∫
Ω

ϕ(x, |∇Tk(un)|) dx ≤ C(k + ||v0||∞). (36)

Thanks to Lemma 2.8, there exists a constant λ > 0 depends only of Ω such
that ∫

Ω

ϕ(x, |v|) dx ≤
∫

Ω

ϕ(x, λ|∇v|) dx ∀v ∈W 1
0Lϕ(Ω). (37)

Taking v = 1
λ |Tk(un)| in (37) and using (36), one has∫

Ω

ϕ(x,
1

λ
|Tk(un)|) dx ≤

∫
Ω

ϕ(x, |∇Tk(un)|) dx ≤ C(k + ||v0||∞). (38)

Then we deduce by using (38), that

meas{|un| > k} ≤ 1

inf
x∈Ω

ϕ(x, kλ )

∫
{|un|>k}

ϕ(x,
k

λ
) dx

≤ 1

inf
x∈Ω

ϕ(x, kλ )

∫
Ω

ϕ(x,
1

λ
|Tk(un)|) dx

≤ C(k + ||v0||∞)

inf
x∈Ω

ϕ(x, kλ )
∀n, ∀k ≥ 0.

(39)
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For any β > 0, we have

meas{|un − um| > β} ≤ meas{|un| > k}+meas{|um| > k}
+meas{|Tk(un)− Tk(um)| > β}

so that

meas{|un − um| > β} ≤ 2C(k + ||v0||∞)

inf
x∈Ω

ϕ(x, kλ )
+meas{|Tk(un)− Tk(um)| > β}.

(40)

By using (38), we deduce that (Tk(un)) is bounded in W 1
0Lϕ(Ω), and then we

can assume that (Tk(un)) is a Cauchy sequence in measure in Ω.

Let ε > 0 then by (40) and the fact that
2C(k + ||v0||∞)

inf
x∈Ω

ϕ(x, kλ )
→ 0 as k → +∞

there exists some k = k(ε) > 0 such that

meas{|un − um| > λ} < ε, for all n,m ≥ h0(k(ε), λ).

This proves that un is a Cauchy sequence in measure, thus, un converges almost
everywhere to some measurable function u.

Finally, by (36) and Lemma 4.4 of [13], we obtain for all k > 0{
Tk(un) ⇀ Tk(u) weakly in W 1

0Lϕ(Ω) for σ(ΠLϕ,ΠEψ)

Tk(un) −→ Tk(u) strongly in Eϕ(Ω) and a.e. in Ω.
(41)

Next step, we will use Banach-Steinhaus Theorem to prove the following propo-
sition but first let reamrk that for all s ∈ R we have

a(x, Tk(un),∇Tk(un)) =

{
a(x, un,∇un) if |s| ≤ k,
0 if |s| > k.

(42)

Proposition 3.2. Let un be a solution of the approximate problem (Pn), then(
a(x, Tk(un),∇Tk(un))

)
n

is bounded in (Lψ(Ω))N . (43)

Proof. Let w ∈ (Eϕ(Ω)N with ‖w‖ϕ,Ω ≤ 1. Thanks to (17) we can write(
a(x, un,∇un)− a(x, un, w)

)(
∇un − w

)
> 0,

hence∫
{|un|≤k}

a
(
x, un,∇un

)
w dx ≤

∫
{|un|≤k}

a
(
x, un,∇un

)
∇un dx

−
∫
{|un|≤k}

a(x, un, w)
(
∇un − w

)
dx.

(44)
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Using (16) and since Tk(un) is bounded in W 1
0Lϕ(Ω), one easily deduces that∫

Ω

a
(
x, Tk(un),∇Tk(un)

)
∇Tk(un) ≤ c8(k). (45)

Combining the fact that Tk(un) is bounded in W 1
0Lϕ(Ω), (44) and (46), we get∫

Ω

a
(
x, Tk(un),∇Tk(un)

)
w ≤ c9(k). (46)

Hence, thanks to the Banach-Steinhaus theorem, the sequence (a(x, un,∇un))n
is bounded in (Lψ(Ω))N . �X

Step 3: Almost every where convergence of gradients.

We will introduce the following function of one real variable s, which is defined
as

hm(s) =


1 if |s| ≤ j
0 if |s| ≥ j + 1

j + 1− s if j ≤ |s| ≤ j + 1

j + 1 + s if − (j + 1) ≤ |s| ≤ −j

with j a nonnegative real parameter.

Let Ωs = {x ∈ Ω : |∇Tk(u(x))| ≤ s} and denote by χs the characteristic
function of Ωs. Clearly, Ωs ⊂ Ωs+1 and meas(Ω\Ωs)→ 0 as s→∞.

In order to prove the modular convergence of truncation Tk(un), we shall
show the following assertions:

Assertion (i).

lim
j→∞

lim sup
n→∞

∫
{j≤|un|≤j+1}

a(x, un,∇un)∇un dx = 0. (47)

Assertion (ii).

Tk(un)→ Tk(u) in W 1
0Lϕ(Ω) for the modular convergence ∀k > 0. (48)

Proof. of Assertion (i). If we take v = un + exp(−G(un))T1(un − Tj(un))−

as test function in (Pn), we get,∫
{−(j+1)≤un≤−j}

a(x, un,∇un)∇un exp(−G(un)) dx

≤
∫

Ω

(
− fn + ρ(x)

)
exp(−G(un))T1(un − Tj(un))− dx.

(49)
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58 ABDESLAM TALHA & MOHAMED SAAD BOUH ELEMINE VALL

Using the fact that

exp(G(−∞)) ≤ exp(−G(un)) ≤ exp(G(+∞))

we deduce∫
{−(j+1)≤un≤−j}

a(x, un,∇un)∇un dx

≤ −c10

∫
Ω

(
fn − ρ(x)

)
exp(−G(un))T1(un − Tj(un))− dx.

(50)

Since fn → f in L1(Ω) and |fn exp(−G(un))T1(un−Tj(un))−| ≤ exp
( ||h||L1(Ω)

α

)
|fn| then Vitali’s Theorem permits us to confirm that

lim
j→∞

lim
n→∞

∫
Ω

fn exp(−G(un))T1(un − Tj(un))− dx = 0. (51)

Similarly, since ρ ∈ L1(Ω), we obtain

lim
j→∞

lim
n→∞

∫
Ω

ρ exp(−G(un))T1(un − Tj(un))− dx = 0. (52)

Putting together the results from equations (50), (51), (52), we conclude that

lim
j→∞

lim sup
n→∞

∫
{−(j+1)≤un≤−j}

a(x, un,∇un)∇un dx = 0. (53)

On the other hand, taking v = un − η exp(G(un))T1(un − Tj(un))+ as test
function in (Pn) and reasoning as in the proof of (53), we deduce that

lim
j→∞

lim sup
n→∞

∫
{j≤un≤j+1}

a(x, un,∇un)∇un dx = 0. (54)

Thus (47) follows from (53) and (54). �X

Proof. of Assertion (ii). Let k ≥ ||v0||∞. By using (21) there exists a se-
quence there exists vj ∈ KΨ ∩ W 1

0Eϕ(Ω) ∩ L∞(Ω) which converges to Tk(u)
for the modular convergence in W 1

0Eϕ(Ω). �X
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Let v = un−η exp(G(un))(Tk(un)−Tk(vi))
+hj(un) as test function in (Pn),

we obtain by using (18) and (20)∫
{Tk(un)−Tk(vi)≥0}

exp(G(un))a(x, Tk(un),∇Tk(un))∇(Tk(un)−Tk(vi))hj(un) dx

−
∫
{j≤un≤j+1}

exp(G(un))a(x, un,∇un)∇un(Tk(un)− Tk(vi))
+ dx

≤
∫

Ω

ρ(x)(Tk(un)− Tk(vi))
+hj(un) exp(G(un)) dx

+

∫
Ω

fn(x)(Tk(un)− Tk(vi))
+hj(un) exp(G(un)) dx.

(55)

Thanks to (54), the second integral tends to zero as n and j tend to infinity,
and by Lebesgue Theorem, we deduce that the right–hand side converges to
zero as n and i tend to infinity.

Then the least inequality becomes,∫
{Tk(un)−Tk(vi)≥0}

exp(G(un))a(x, Tk(un),∇Tk(un))∇(Tk(un)−Tk(vi))hj(un)dx

−
∫
{Tk(un)−Tk(vi)≥0, |un|≥k}

exp(G(un))a(x, un,∇un)∇Tk(vi)hj(un)dx≤ε(n, i, j).

(56)

Now, observe that∣∣∣∫
{Tk(un)−Tk(vi)≥0, |un|≥k}

exp(G(un))a(x, un,∇un)∇Tk(vi)hj(un) dx
∣∣∣

≤ c11

∫
{|un|≥k}

|a(x, Tj+1(un),∇Tj+1(un))| |∇vi| dx.
(57)

On the one hand, since (|a(x, Tj+1(un),∇Tj+1(un))|)n is bounded in (Lψ(Ω))N ,
we get for a subsequence, a(x, Tj+1(un),∇Tj+1(un)) ⇀ lj weakly in (Lψ(Ω))N

for σ(ΠLψ,ΠEϕ) with lj ∈ (Lψ(Ω))N and since |∇vi|χ{|un|≥k} converges stron-
gly to |∇vi|χ{|u|≥k} in Eϕ(Ω) we have by letting n→∞∫

{|un|≥k}
|a(x, Tj+1(un),∇Tj+1(un))| |∇vi| dx→

∫
{|un|≥k}

lj |∇vi| dx.

Now, we use the modular convergence of (vi)i, which leads to∫
{|un|≥k}

lj |∇vi| dx→
∫
{|un|≥k}

lj |∇Tk(u)| dx.
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Since ∇Tk(u) = 0 on the subset {x ∈ Ω : |u(x)| > k}. we deduce that∫
{|un|≥k}

|a(x, Tj+1(un),∇Tj+1(un))| |∇vi| dx = ε(n, i, j).

Combining this with (56) and (57) we obtain.∫
{Tk(un)−Tk(vi)≥0}

exp(G(un))a(x, Tk(un),∇Tk(un))∇(Tk(un)−Tk(vi))hj(un)dx

≤ ε(n, i, j).
(58)

On the other side, we have∫
{Tk(un)−Tk(vi)≥0}

exp(G(un))a(x, Tk(un),∇Tk(un))∇(Tk(un)− Tk(vi))hj(un)dx

≥
∫
{Tk(un)−Tk(vi)≥0}

exp(G(un))[a(x, Tk(un),∇Tk(un))− a(x, Tk(un),∇Tk(vi)χ
i
s)]dx

× [∇Tk(un))−∇Tk(vi)χ
i
s)]hj(un) dx

+

∫
{Tk(un)−Tk(vi)≥0}

exp(G(un))a(x, Tk(un),∇Tk(vi)χ
i
s)[∇Tk(un))−∇Tk(vi)χ

i
s)]hj(un)dx

− c12

∫
Ω\Ωs

|a(x, Tk(un),∇Tk(un))| |∇vi| dx,

(59)

where χjs denotes the characteristic function of the subset Ωjs =
{x ∈ Ω : |∇Tk(vi)| ≤ s}.

Reasoning as above, we get∫
Ω\Ωs

|a(x, Tk(un),∇Tk(un))| |∇vi| dx =

∫
Ω\Ωs

lk |∇Tk(u)| dx+ ε(n, i, j).

(60)

For what concerns the second term of the right hand side of the (59) we can
write,∫
{Tk(un)−Tk(vi)≥0}

exp(G(un))a(x, Tk(un),∇Tk(vi)χ
i
s)[∇Tk(un))−∇Tk(vi)χ

i
s)]hj(un)dx

=

∫
{Tk(un)−Tk(vi)≥0}

exp(G(un))a(x, Tk(un),∇Tk(vi)χ
i
s)∇Tk(un)) dx

−
∫
{Tk(un)−Tk(vi)≥0}

exp(G(un))a(x, Tk(un),∇Tk(vi)χ
i
s)∇Tk(vi)χ

i
s)hj(un) dx.

(61)
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Starting with the first term of the last equality, we have by letting n→∞,∫
{Tk(un)−Tk(vi)≥0}

exp(G(un))a(x, Tk(un),∇Tk(vi)χ
i
s)∇Tk(un)) dx

=

∫
{Tk(u)−Tk(vi)≥0}

exp(G(u))a(x, Tk(u),∇Tk(vi)χ
i
s)∇Tk(u) dx+ ε(n),

since

exp(G(un))a(x, Tk(un),∇Tk(vi)χ
i
s)χ{Tk(un)−Tk(vi)≥0}

→ exp(G(u))a(x, Tk(u),∇Tk(vi)χ
i
s)χ{Tk(u)−Tk(vi)≥0}

strongly in (Eψ(Ω))N by using Lemma 2.12 while ∇Tk(un) ⇀ ∇Tk(u) weakly
in (Lϕ(Ω))N for σ(ΠLϕ,ΠEψ).

Letting again i→∞, one has, since

a(x, Tk(u),∇Tk(vi)χ
i
s)χ{Tk(u)−Tk(vi)≥0} → a(x, Tk(u),∇Tk(u)χs) strongly

in ((Eψ(Ω))N by using the modular convergence of vi and Lebesgue theorem,∫
{Tk(un)−Tk(vi)≥0}

exp(G(Tk(un)))a(x, Tk(un),∇Tk(vi)χ
i
s)∇Tk(un)) dx

=

∫
Ω

exp(G(un))a(x, Tk(u),∇Tk(u)χs)∇Tk(u)) dx+ ε(n, i, j).

In the same way, we have

−
∫
{Tk(un)−Tk(vi)≥0}

exp(G(Tk(un)))a(x, Tk(un),∇Tk(vi)χ
i
s)∇Tk(vi))χ

i
shj(un) dx

= −
∫

Ω

exp(G(un))a(x, Tk(u),∇Tk(u)χs)∇Tk(u))χs dx+ ε(n, i, j).

Adding the two equalities we conclude that∫
{Tk(un)−Tk(vi)≥0}

exp(G(un))a(x, Tk(un),∇Tk(vi)χ
i
s)

× [∇Tk(un))−∇Tk(vi)χ
i
s)]hj(un) dx

= ε(n, i, j).

(62)

Combining (58)–(60) and (62), we then conclude∫
{Tk(un)−Tk(vi)≥0}

[a(x, Tk(un),∇Tk(un))− a(x, Tk(un),∇Tk(vi)χ
i
s)]

× [∇Tk(un))−∇Tk(vi)χ
i
s)]hj(un) dx

≤ c13

∫
Ω\Ωs

lk |∇Tk(u)| dx+ ε(n, i, j).

(63)
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Now, takin v = un + exp(−G(un))(Tk(un) − Tk(vi))
−hj(un) as test function

(Pn) and reasoning as in (63) it is possible to conclude that,

∫
{Tk(un)−Tk(vi)≤0}

[a(x, Tk(un),∇Tk(un))− a(x, Tk(un),∇Tk(vi)χ
i
s)]

× [∇Tk(un))−∇Tk(vi)χ
i
s)]hj(un) dx

≤ c14

∫
Ω\Ωs

lk |∇Tk(u)| dx+ ε(n, i, j).

(64)

Finally by using (63) and (64), we get

∫
Ω

[a(x, Tk(un),∇Tk(un))− a(x, Tk(un),∇Tk(vi)χ
i
s)]

× [∇Tk(un))−∇Tk(vi)χ
i
s)]hj(un) dx

≤ c15

∫
Ω\Ωs

lk |∇Tk(u)| dx+ ε(n, i, j).

(65)

On the other hand, we have

∫
Ω

[a(x, Tk(un),∇Tk(un))− a(x, Tk(un),∇Tk(u)χs)][∇Tk(un)−∇Tk(u)χs]hj(un) dx

−
∫

Ω

[a(x, Tk(un),∇Tk(un))−a(x, Tk(un),∇Tk(vi)χ
i
s)][∇Tk(un)−∇Tk(vi)χ

i
s]hj(un) dx

=

∫
Ω

a(x, Tk(un),∇Tk(vi)χ
i
s)[∇Tk(un)−∇Tk(vi)χ

i
s]hj(un) dx

−
∫

Ω

a(x, Tk(un),∇Tk(u)χs)][∇Tk(un)−∇Tk(u)χs]hj(un) dx

+

∫
Ω

a(x, Tk(un),∇Tk(un))[∇Tk(vi)χ
i
s −∇Tk(u)χs]hj(un) dx,

(66)

and, as it can be easily seen, each integral of the right-hand side of the form
ε(n, i, j) implying that

∫
Ω

[a(x, Tk(un),∇Tk(un))− a(x, Tk(un),∇Tk(u)χs)]

[∇Tk(un)−∇Tk(u)χs]hj(un) dx

=

∫
Ω

[a(x, Tk(un),∇Tk(un))− a(x, Tk(un),∇Tk(vi)χ
i
s)]

× [∇Tk(un)−∇Tk(vi)χ
i
s]hj(un) dx+ ε(n, i, j).

(67)
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Furthermore, using (65) and (67), we have∫
Ω

[a(x, Tk(un),∇Tk(un))− a(x, Tk(un),∇Tk(u)χs)]

× [∇Tk(un)−∇Tk(u)χs]hj(un) dx

≤ c16

∫
Ω\Ωs

lk |∇Tk(u)| dx+ ε(n, i, j).

(68)

Now, we remark that∫
Ω

[a(x, Tk(un),∇Tk(un))− a(x, Tk(un),∇Tk(u)χs)][∇Tk(un)−∇Tk(u)χs] dx

=

∫
Ω

[a(x, Tk(un),∇Tk(un))− a(x, Tk(un),∇Tk(u)χs)]

× [∇Tk(un)−∇Tk(u)χs]hj(un) dxw

+

∫
Ω

[a(x, Tk(un),∇Tk(un))− a(x, Tk(un),∇Tk(u)χs)]

× [∇Tk(un)−∇Tk(u)χs][1− hj(un)] dx.

(69)

Since 1− hj(un) = 0 in {|un(x)| ≤ j}, then for j large enough the second term
of the right hand side of (69) can be written as follows∫

Ω

[a(x, Tk(un),∇Tk(un))− a(x, Tk(un),∇Tk(u)χs)]

× [∇Tk(un)−∇Tk(u)χs][1− hj(un)] dx

= −
∫

Ω

a(x, Tk(un),∇Tk(u)χs)[1− hj(un)] dx

+

∫
Ω

a(x, Tk(un),∇Tk(u)χs)∇Tk(u)χs[1− hj(un)] dx.

(70)

Thanks to a(x, Tk(un),∇Tk(un)) is bounded in (Lψ(Ω))N uniformly on n while
∇Tk(u)χs(1− hj(un)) converges to zero strongly in (Lϕ(Ω))N , hence the first
term of the right-hand side of (70) converges to zero as n goes to infinity.

The second term converges to zero because∇Tk(u)χs(1−hj(un)) ⇀ ∇Tk(u)
χs(1 − hj(u)) = 0 strongly in Eϕ(Ω) and by the continuity of the Nymetskii
operator a(x, Tk(un),∇Tk(u)χs) converges strongly to a(x, Tk(u),∇Tk(u)χs).
Finally, we deduce that

lim
n→∞

∫
Ω

[a(x, Tk(un),∇Tk(un))− a(x, Tk(un),∇Tk(u)χs)]

× [∇Tk(un)−∇Tk(u)χs][1− hj(un)] dx = 0.

(71)
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Combining (68), (69) and (71), we get∫
Ω

[a(x, Tk(un),∇Tk(un))− a(x, Tk(un),∇Tk(u)χs)][∇Tk(un)−∇Tk(u)χs] dx

≤ c16

∫
Ω\Ωs

lk |∇Tk(u)| dx+ ε(n, i, j).

(72)

Letting n, i, j and s tend to infinity, we deduce∫
Ω

[a(x, Tk(un),∇Tk(un))−a(x, Tk(un),∇Tk(u)χs)][∇Tk(un)−∇Tk(u)χs] dx→ 0

as n→∞ and as s→∞.
As in [20], we deduce that there exists a subsequence, still denoted by un,

such that

∇un → ∇u a.e. in Ω, (73)

which implies that

a(x, Tk(un),∇Tk(un)) ⇀ a(x, Tk(u),∇Tk(u)) weakly in (Lψ(Ω))N (74)

for σ(ΠLψ,ΠEϕ), ∀k > 0.

Step 4: Equi-integrability of the non-linearities.

We shall prove that gn(x, un,∇un) −→ g(x, u,∇u) strongly in L1(Ω), by using
Vitali’s theorem. Since gn(x, un,∇un) → g(x, u,∇u) a.e. in Ω, thanks to (41)
and (73), it suffices to prove that gn(x, un,∇un) are uniformly equi–integrable
in Ω.

On the one hand, let v = un + exp(−G(un))
∫ 0

un
h(s)χ{s<−`} ds. Since v ∈

W 1
0Lϕ(Ω) and v ≥ Ψ, v is an admissible test function in (Pn). Then, we obtain

by using (20), that∫
Ω

a(x, un,∇un)∇un
h(un)

α
exp(−G(un))

∫ 0

un

h(s)χ{s<−`} ds dx

+

∫
Ω

a(x, (un),∇un)∇un exp(−G(un))h(un)χ{s<−`} dx

≤
∫

Ω

ρ(x) exp(−G(un))

∫ 0

un

h(s)χ{s<−`} ds dx

+

∫
Ω

h(x)ϕ(x, |∇un|) exp(−G(un))

∫ 0

un

h(s)χ{s<−`} ds dx

−
∫

Ω

fn exp(−G(un))

∫ 0

un

h(s)χ{s<−`} ds dx.
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Using (18) and since
∫ 0

un
h(s)χ{s<−`} ds ≤

∫ −`
−∞ h(s) ds, we get

∫
Ω

a(x, (un),∇un)∇un exp(−G(un))h(un)χ{un<−`} dx

≤ exp
( ||h||L1(R)

α

)∫ −`
−∞

h(s) ds(||ρ||L1(Ω) + ||fn||L1(Ω)).

Using again (18), we obtain

∫
{un<−`}

h(x)ϕ(x, |∇un|) dx ≤ c17

∫ −`
−∞

h(s) ds.

And since h ∈ L1(R), we deduce that,

lim
`→∞

sup
n∈N

∫
{un<−`}

h(x)ϕ(x, |∇un|) dx = 0. (75)

On the other hand, letM = exp(||h||L1(R))
∫ +∞

0
h(s) ds and ` ≥M+||v0||L∞(Ω).

Consider v = un − exp(G(un))
∫ un

0
h(s)χ{s>l} ds. Since v ∈ W 1

0Lϕ(Ω) and
v ≥ Ψ, v is an admissible test function in (Pn). Then, similarly to (75), we
deduce that

lim
`→∞

sup
n∈N

∫
{un>`}

h(x)ϕ(x, |∇un|) dx = 0. (76)

Combining (73), (75) and (76) and Vitali’s Theorem,we conclude that g(x,u,∇u)
∈ L1(Ω) and we can easily to see that

gn(x, un,∇un) −→ g(x, u,∇u) strongly in L1(Ω). (77)

Step 5: Passing to the limit.

Let v ∈ KΨ ∩W 1
0Lϕ(Ω) ∩ L∞(Ω), we take un − Tk(un − v) as test function in

(Pn), we can write∫
Ω

a(x, un,∇un)∇Tk(un − v) dx+

∫
Ω

Φn(un)∇Tk(un − v) dx

+

∫
Ω

gn(x, un,∇un)Tk(un − v) dx

≤
∫

Ω

fnTk(un − v) dx,

(78)
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which implies that∫
{|un−v|≤k}

a(x, un,∇un)∇un dx

−
∫
{|un−v|≤k}

a(x, Tk+||v||∞(un),∇Tk+||v||∞(un))∇v dx

+

∫
Ω

Φn(Tk+||v||∞(un))∇Tk(un − v) dx

+

∫
Ω

gn(x, un,∇un)Tk(un − v) dx

≤
∫

Ω

fnTk(un − v) dx.

(79)

By Fatou’s lemma and the fact that

a(x, Tk+||v||∞(un),∇Tk+||v||∞(un)) ⇀ a(x, Tk+||v||∞(u),∇Tk+||v||∞(u))

weakly in (Lψ(Ω))N for σ(ΠLψ,ΠEϕ), one easily sees that∫
{|un−v|≤k}

a(x, Tk+||v||∞(un),∇Tk+||v||∞(un))∇Tk+||v||∞(un) dx

−
∫
{|un−v|≤k}

a(x, Tk+||v||∞(un),∇Tk+||v||∞(un))∇v dx

≥
∫
{|u−v|≤k}

a(x, Tk+||v||∞(u),∇Tk+||v||∞(u))∇Tk+||v||∞(u) dx

−
∫
{|u−v|≤k}

a(x, Tk+||v||∞(u),∇Tk+||v||∞(u))∇v dx.

(80)

Furthermore, for n large enough (n > k + ||v||∞)∫
Ω

Φn(Tk+||v||∞(un))∇Tk(un − v) dx =

∫
Ω

Φn(Tk+||v||∞(un))∇Tk(u− v) dx

=

∫
Ω

Φ(Tk+||v||∞(un))∇Tk(u− v) dx

→
∫

Ω

Φ(Tk(u))∇Tk(u− v) dx.

(81)

Since Tk(un − v)→ Tk(u− v) weakly in L∞(Ω) as n→∞ we have∫
Ω

gn(x, un,∇un)Tk(un − v) dx→
∫

Ω

g(x, u,∇u)Tk(u− v) dx as n→∞, (82)
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and ∫
Ω

fn∇Tk(un − v) dx→
∫

Ω

f ∇Tk(un − v) dx as n→∞. (83)

Combining (79)–(83), we have∫
Ω

a(x, u,∇u)∇Tk(u− v) dx+

∫
Ω

Φ(u)∇Tk(u− v) dx

+

∫
Ω

g(x, u,∇u)Tk(u− v) dx ≤
∫

Ω

fTk(u− v) dx.

(84)

Now, let v ∈ KΨ∩L∞(Ω) by condition (21) there exists vj ∈ KΨ∩W 1
0Lϕ(Ω)∩

L∞(Ω) such that vj converges to v modular, let ` > max(||v0||∞, ||v||∞), taking
v = T`(vj) in (84), we have∫

Ω

a(x, u,∇u)∇Tk(u− T`(vj)) dx+

∫
Ω

Φ(u)∇Tk(u− T`(vj)) dx

+

∫
Ω

g(x, u,∇u)Tk(u− T`(vj)) dx

≤
∫

Ω

fTk(u− T`(vj)) dx.

(85)

We can easily pass to the limit as j → +∞ to get∫
Ω

a(x, u,∇u)∇Tk(u− T`(v)) dx+

∫
Ω

Φ(u)∇Tk(u− T`(v) dx

+

∫
Ω

g(x, u,∇u)Tk(u− T`(v)) dx

≤
∫

Ω

fTk(u− T`(v)) dx, ∀v ∈ KΨ ∩ L∞(Ω).

(86)

Finally, letting ` (` > max(||v0||∞, ||v||∞)) to the infinity we deduce∫
Ω

a(x, u,∇u)∇Tk(u− v) dx+

∫
Ω

Φ(u)∇Tk(u− v) dx

+

∫
Ω

g(x, u,∇u)Tk(u− v) dx =

∫
Ω

fTk(u− v) dx,

∀v ∈ KΨ ∩ L∞(Ω) and ∀k > 0.

Thus the proof of Theorem 3.1 is complete.
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