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Abstract. A mathematical model for dengue fever transmission is analyzed,
which incorporates relevant biological and ecological factors: vertical trans-
mission and seasonality in the interaction between the vector (Aedes aegypti
females) and the host (human). The existence and uniqueness of a positive
disease-free periodic solution is proved; the global stability of the disease-free
solution and the effect of periodic migrations of mosquitoes carrying the virus
on the transmission of dengue are analyzed utilizing the mathematical defi-
nition of the Basic Reproductive Number in periodic environments; finally, it
is numerically corroborated with the help of the Basic Reproductive Number
that dengue cannot invade the disease-free state if it is less than one and can
invade if it is greater than one, however, in both threshold conditions when
vertical transmission occurs, the number of infected people and carrier vec-
tors rises, representing a mechanism for the persistence of dengue cases in a
community throughout a natural year.
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sion, Basic Reproductive Number.
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Resumen. Se propone un modelo matemático para la transmisión de la fiebre
del dengue que incorpora factores biológicos y ecológicos relevantes: trans-
misión vertical y estacionalidad en la interacción entre el vector (Aedes ae-
gypti) y el hospedero (humano). Se demuestra la existencia y unicidad de una
solución periódica positiva libre de la enfermedad; la estabilidad global de la
solución libre de la enfermedad y el efecto de las inmigraciones periódicas de
mosquitos portadores del virus en la transmisión del dengue se analizan medi-
ante la definición matemática del Número Reproductivo Básico en ambientes
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periódicos; finalmente, se corrobora numéricamente con ayuda del Número
Reproductivo Básico que el dengue no puede invadir el estado libre de la
enfermedad si es menor que uno y puede invadir si es mayor que uno, sin em-
bargo, cuando en ambas condiciones de umbral ocurre transmisión vertical, se
eleva el número de personas infectadas y vectores portadores, representando
un mecanismo para la persistencia de casos de dengue en una comunidad a lo
largo de un año natural.

Palabras y frases clave. Dengue, estacionalidad, Aedes aegypti, transmisión ver-
tical, Número Reproductivo Básico.

1. Introduction

Dengue fever (DENV) is the arthropod-transmitted disease with the highest
morbi-mortality in the world, also one of the most frequent causes of hospital-
ization and significant interruption of income potential in endemic areas (an
estimated 390 million people become infected every year, 500 000 people suf-
fering from severe dengue require hospitalization and 2.5% die), it affects the
tropical and subtropical countries of Asia, the Pacific Islands, the Caribbean
islands, Africa and Central and South America [11]. There are macrofactors
to explain the increase of DENV on a global scale: climatics (global warming)
and social, such as the increase in world population, the tendency to disor-
derly urbanization, international travel and poverty expressed in problems of
housing, education, water supply, solid waste collection and others, as well as
the lack of effective national and international programs against this disease
and its vector; currently, vector control is the predominant strategy to prevent
the spread of DENV because there are no effective, economical or tetravalent
vaccine and treatment for the disease [43].

DENV belongs to the family Flaviviridae and there are four variants (sero-
types) formally recognized: DEN-1, DEN-2, DEN-3 and DEN-4 [48], but in
October 2013 a possible fifth sylvatic serotype (DENV-5) has been detected
during screening of viral samples taken from a 37 year old farmer admitted in
hospital in Sarawak state of Malaysia in the year 2007 [45]; the infection by a
serotype 1 to 4 confers permanent immunity against this serotype and only for
a few months against the rest of the serotypes; if a person is infected by one of
the four serotypes, they will never be infected by the same serotype (homolo-
gous immunity), but lose immunity to the other three serotypes (heterologous
immunity) in approximately 12 weeks and then becomes more susceptible to de-
veloping dengue hemorrhagic fever [22]. The primary vector of DENV is Aedes
aegypti and the secondary vector is Aedes albopictus, both can feed at any time
during the day and acquires the virus through the bite to a sick person during
his period of viremia, which goes from a day before the onset of fever to an
average of 5 or 6 days after the start of the same, being able to reach up to
9-10 days exceptionally [25].
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Climate variables such as temperature, humidity and rainfall significantly
influence the mosquito development and several studies suggest that entomo-
logical parameters are temperature sensitive as the dengue fever normally oc-
curs in tropical and subtropical regions [41]; the high temperature increases
the lifespan of mosquitoes and shortens the extrinsic incubation period of the
dengue virus, increasing the number of infected mosquitoes, the rainfall pro-
vides places for eggs and for larva development [26]. Vertical (or transovarial)
transmission (VT) of dengue virus in Ae. aegypti and Ae. albopictus also could
explain the persistence over inter-epidemic periods in endemic areas [4] and is
well documented under both experimental [44, 36] and field [5, 39] conditions.

Esteva and Vargas [18] studied the impact of VT on dengue disease dynam-
ics, assuming that a proportion of vector recruitment occurred in the infectious
class; the authors found that VT to increase dramatically the endemic propor-
tion of infectious vectors, which could favour the persistence of the virus in
areas with low human densities, conversely to mechanical transmission, which
had a weak impact. Similar conclusions to Esteva and Vargas [18] were drawn
by Coutinhoa et al. [12] from a structured model accounting for a pre-adult
stage with periodic maturation rates and assuming that a proportion of the
eggs laid by infected mosquitoes were vertically infected; the authors identified
VT as a possible explanation of dengue overwintering and explained, using a
time-dependent threshold condition, the delay observed between the peaks in
vector density and in dengue cases.

A natural and important problem associated with epidemic models is to es-
timate whether an infection can invade and persist in a population, a threshold
value used for this is the basic reproduction number (BRN), epidemiologically
defined as the average number of secondary cases produced by an infected in-
dividual introduced into a fully susceptible population during their period of
infectivity [16]. Diekmann et al., van den Driessche and Watmough [16, 56, 57]
presented a general approach for the calculus of the BRN for compartmental
disease transmission models, but with constant environment parameters. It is
known that periodic fluctuations are common in the evolution of vector-borne
diseases; periodic changes in the birth rates, mortality and contact of the pop-
ulations are evident in ecosystems and many models in the literature inappro-
priately assume that the vector population is constant over time [2]. In the past
twenty years, many authors have extended the definition of the BRN to periodic
environments, we highlight authors like Bacaër and Guernaoui (2006), Thieme
(2009), Bacaër (2011), Inaba (2012), Bacaër and Ait Dads (2012), Wang and
Zhao (2017) [8, 55, 6, 35, 7, 59].

This paper is organized as follows: in section 2, the mathematical formula-
tion and methodological approach of the proposed model is discussed; in section
3, existence of a dengue-free periodic solution is established; in section 4, we
show that the dynamical properties of the model are completely determined
by the BRN; in section 5, the BRN is derived numerically by solving a matrix
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eigenvalue problem and computational simulations are presented to illustrate
the analytical findings; finally, general conclusions are drawn in section 6.

Notation and concepts

Throughout the text the omission of (t) from expressions that depend on time
is allowed, the superscript > indicates transposition of a matrix, <(λ) is the
real part of λ, ρ(A) denotes the spectral radius of a matrix A, In is the n× n
identity matrix and On is the n× n null matrix.

For a non-negative piecewise continuous ω-periodic function L : R+ =
[0 , ∞)→ R, let

Lu = max
t∈[0 , ω)

L(t), Ll = min
t∈[0 , ω)

L(t), L∞ = lim sup
t→∞

L(t), L∞ = lim inf
t→∞

L(t).

The long-term average of L on the interval [T , t+ T ] is defined by

〈
L(t)

〉
= lim
T→∞

1

T

∫ t+T

t

L(τ)dτ.

Let A be a square matrix. We say that A is cooperative if all its off-diagonal
elements are non-negative and we say that A is irreducible if it cannot be placed
into block upper-triangular form by simultaneous row/column permutations.

2. Model formulation

We consider a model of a dengue serotype that circulates in some community
due to the interaction between the population of humans and the population
of Aedes aegypti, whose assumptions are:

(1) Preserving some resemblance regarding the symptomatology of the dis-
ease in the host, we use the following nomenclature:

• susceptible population/non-carrier population, subscript S, compris-
ing those individuals capable of catching the disease;

• non-infectious carrier population, subscript E, comprising those mos-
quitoes temporarily unable of transmitting the disease;

• symptomatic population/infectious carrier population, subscript I,
comprising those individuals capable of transmitting the disease; and

• recovered or inmune population, subscript R, including those indi-
viduals who acquire permanent immunity against infection.

(2) All vector population measures refer to densities of female mosquitoes.

(3) Humans are the main host of the virus and there are no alternative hosts
available as blood sources.
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(4) Disease-induced death in humans or in vectors is not considered.

(5) Carrier vectors probably transmit the virus throughout the life-span.

(6) The intrinsic rate of growth of the human population is constant.

(7) The variation birth rates of adult mosquitoes is strongly influenced by
environmental factors such as temperature, humidity and rainfall and,
therefore, is seasonally forced.

(8) Both populations are uniform and mixes homogeneously.

(9) Humans move from symptomatic state to immune state at constant rate r
and mosquitoes move from non-carrier state to carrier states at constant
rate r and c, where 1/r and 1/c are the average survival periods in their
immediately preceding states.

(10) Because of vertical transmission, a fraction g of newly emerged adult
mosquitoes contributes to the non-infectious carrier class and the com-
plementary fraction, 1− g, contributes to the non-carrier class.

Model parameters:

• m: natural mortality rate of adult mosquitoes.

• h: natural mortality rate of humans.

• r: human recovery rate.

• b: per head contact rate of adult female mosquitoes on humans, namely,
the average number of bites per mosquito per day.

• p: probability of transmission of an infectious carrier mosquito by bite on
a susceptible human.

• q: probability of transmission from a symptomatic human to mosquito.

• c: transfer rate of mosquitoes from non-infectious carrier to infectious
carrier.

• g: rate of female mosquitoes hatched from viable eggs carrying the dengue
serotype.

• ∆(t): mosquito recruitment rate (by birth and immigration) at time t.

• H(t): total number of people in the community at time t.
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Dengue infection with one serotype is confirmed to produce lifelong immu-
nity to that type, but only short-time protection against the other serotypes,
which will increase risk of severe disease from secondary infection if a person
previously exposed to serotype DENV-1 contracts serotype DENV-2 or -3, or if
someone previously exposed to DENV-3 acquires DENV-2 [27]. Considering the
structure of the SIR epidemic model, our epidemic model divides the human
population into a susceptible, exposed and infectious classes. The population
of the vector is described by a susceptible-exposed-infectious model, in which
the intrinsic incubation period has a relatively low impact on the dynamics of
transmission of dengue as shown in [47], and therefore is not represented. Con-
versely, the extrinsic incubation period is not ignored when studying the process
of transmission of dengue because it covers a large part of the mosquito’s life
expectancy [19, 52]. Even more, in many regions, the incidence of dengue fluc-
tuates seasonally with few or no infections recorded in unfavorable periods and
there is evidence that VT within the mosquito population allows the virus to
persist at this time, so it is important include seasonal parameters and VT to
explain intra-annual fluctuations of dengue epidemics [12].

Transmission dynamics is interpreted according to the compartment dia-
gram in Figure 1.

h
(
HS + HI + HR

)
// HS

qbMIHS/H //

��

ee HI

��

rHI // HR

��
(1− g)∆(t)

��

hHS g∆(t)

��

hHI hHR

Ms

��

pbHIMS/H //

88

ME

��

cME // MI

��
mMS mME mMI

Figure 1. Flowchart of the model (1), the dashed lines represent the interactions
involved in new infections.

With all the previous considerations, the transmission process is governed by
the system of differential equations (1), where the cross infection between hu-
mans and vectors is modeled by the principle of mass-action normalized with
the total population of humans, that is, the transmission of the virus occurs
only when there is effective contact, which corresponds to an encounter be-
tween a susceptible individual (respectively non-carrier) with a symptomatic
(respectively infectious carrier) with a transmission rate that includes, among
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other aspects, the probability that the virus is transmitted

ḢS = hH− qb

H
MIHS − hHS

ḢI =
qb

H
MIHS − (h+ r)HI

ḢR = rHI − hHR

ṀS = (1− g)∆(t)− pb

H
HIMS −mMS

ṀE = g∆(t) +
pb

H
HIMS − (c+m)ME

ṀI= cME −mMI.

(1)

with initial conditions: HS(0) = HS0 > 0, HI(0) = HI0 > 0, HR(0) = HR0 > 0
MS(0) = MS0 > 0, ME(0) = ME0 > 0, MI(0) = MI0 > 0 and H = HS(t) +

HI(t) + HR(t); the parameters verify that m,h, r, b, c > 0 and (p, q, g) ∈
[
0, 1
]3

;
the mosquito immigration rate, ∆(t), is a non-constant continuous periodic
function with period ω. The region of states of epidemiological interest is:

Π=

{
x=[HSHIHRMSMEMI]

>∈R6
+ :1≤HS+HI+HR =H=const ∧ 0≤MS+ME+MI≤

∆u

m

}
Proposition 2.1. The set (2), Π, is forward invariant under the dynamic
system (1).

Proof. Let[
HS HI HR MS ME MI

]
=
[
x1 x2 x3 x4 x5 x6

]
.

Clearly for s1 = −(qb + h), s2 = −(h + r), and s3 = −h, it is possible to get
ẋi ≥ sixi for xi(0) ≥ 0, i = 1, 2, 3. Analogously, for s4 = −(pb + ml), s5 =
−(c+ml), and s6 = −ml, we have ẋi ≥ sixi for xi(0) ≥ 0, i = 4, 5, 6. Let Wi(t)
be the solution of the scalar differential equation Ẇi = siWi, Wi(0) = xi(0),
whose unique global solution is Wi(t) = xi(0)esit. By the standard comparison
Lemma (see, for example, Lemma 3.4 in [38]), xi(t) ≥ xi(0)esit ≥ 0 for all
t ≥ 0. Now, the total number of hosts, H ≡ H(t) = HS(t) + HI(t) + HR(t),
remains invariant over time since Ḣ = 0 for all t ≥ 0; the total number of
vectors, M ≡ M(t) = MS(t) + ME(t) + MI(t), satisfies

Ṁ ≤ ∆u −mM. (2)

Let W(t) be the solution of the differential equation Ẇ = ∆u − mW and
W(0) = M(0), then

W(t) =

(
W(0)− ∆u

m

)
exp

(
−mt

)
+

∆u

m
.
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Note that W is continuously strictly increasing over R+ if W(0) < ∆u/m.
Consequently, by the comparison lemma, the solution of (2) is defined for all
t ≥ 0 and satisfies

M ≤
(

M(0)− ∆u

m

)
exp

(
−mt

)
+

∆u

m
.

if W(0) < ∆u/m. Therefore, the invariance of Π is a direct consequence of the
non-negativity of solutions, H constant and M∞ = ∆u/m. �X

The solution x(t) with initial condition in (2) of the system of differential
equations (1) is non-negative and uniformly bounded on R+. Moreover, the
right-hand sides of these equations are differentiable with respect to HS, HI,
HR, MS, ME and MI with continuous derivatives, therefore system (1) provides
a unique maximal solution that remains in Π for all t ≥ 0 [38].

3. The dengue-free solution - DFS

As the dynamic system is non-autonomous by means of the mosquito recruit-
ment rate, it has no steady states. This means that the right-hand sides of
these equations in (1) equaled to zero, can not be satisfied simultaneously
as ∆ is time dependent function and all other variables are assumed to be
constant at equilibrium, but still there is a free-disease solution (g ≡ 0): if
HI(t) = ME(t) = MI(t) = 0 for all t ∈ R+, the differential equation of non-
carrier mosquitoes becomes

d

dt
MS(t) = ∆(t)−mMS(t); MS(t0) > 0, ∀t0 ≥ 0. (3)

Below are several lemmas that will be helpful in proving the main results.

Lemma 3.1. If w : [0, ∞) 7−→ R is a periodic function of period ω and t is
any real number, then 〈

w(t)
〉

=
1

ω

∫ ω

0

w(t)dt. (4)

Proof. Let T ∈ [kω , (k + 1)ω), k = 0, 1, 2, . . ., then T = kω + ρ where ρ ∈
[0 , ω). Furthermore,∫ t+T

t

w(τ)dτ =

∫ t+kω

t

w(τ)dτ +

∫ t+kω+ρ

t+kω

w(τ)dτ

= k

∫ ω

0

w(τ + t)dτ +

∫ ρ

0

w(τ + t)dτ.

Dividing by T = kω + ρ and taking the limit k −→∞, we get〈
w(t)

〉
=

1

ω

∫ t+ω

t

w(τ)dτ.
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Differentiating with respect to t it follows that
〈
w(t)

〉
≡ constant ∀t ∈ R, then

just set t = 0. �X

Consider the following linear differential equation

d

dt
NS(t) =

(
m−∆(t)NS(t)

)
NS(t), NS(t0) =

1

MS(t0)
. (5)

Lemma 3.2 implies that MS(t) is bounded by positive constants. For continuous
periodic rates ∆(t) and m(t) of period ω, it follows from the theory of linear
differential equations ([30], Theorem 1.1, p. 408) that a ω-periodic solution
exists if and only if (3) has at least one bounded solution. In the next lemma,
we show that (3) has a unique globally attractive periodic solution.

Lemma 3.2. The linear differential equations (3) and (5) are equivalent, and

there exist constants Nl > 0 and Nu > 0 such that N l ≤ MS(t) ≤ Nu and

1/N u ≤ NS(t) ≤ 1/Nl for all t ∈ R+.

Proof. It is easy to verify that the change of variable MS(t) = 1/NS(t) trans-

forms equation (3) into equation (5). Let ∆l ≤ ∆(t) ≤ ∆ u , where ∆u > ∆l >

0. Notice that
d

dt
NS(t) ≤

(
m − ∆l NS(t)

)
NS(t), then

d

dt
NS(t) < 0 if NS(t) >

m/∆l and hence, for all t ∈ R+, NS(t) ≤ max{NS(0) , m/∆l } = 1/Nl > 0.

To prove that NS(t) is bounded below by a positive constant, choose σ > 0
such that NS(0) ≥ σ, and

m− σ
〈
∆(t)

〉
− σ2 = ρ0 > 0. (6)

Suppose NS(t) is not bounded below, then for each 0 < θ < σ, there exists an
interval [τ1, τ2] such that NS(τ1) = σ, NS(τ2) = θ, and NS(t) < σ for t ∈ (τ1, τ2).

Now notice that
d

dt
NS(t) ≥

(
m − σ∆u)NS(t) for t ∈ [τ1, τ2]. If m − σ∆u ≥ 0

it follows that θ = NS(τ2) ≥ NS(t) ≥ NS(τ1) = σ for t ∈ [τ1, τ2], therefore, the
concordant inequality must be

m− σ∆u = −ρ1 < 0.

In this case NS(t) ≥ σe−ρ1(t−τ1) for t ∈ [τ1, τ2]. At t = τ2, θ ≥ σe−ρ1(τ2−τ1), or
equivalently

ln (σ/θ)
1/ρ1 ≤ τ2 − τ1. (7)

Since θ can be chosen arbitrarily close to zero, Lemma 3.1 and inequality (7)
imply that T = τ2 − τ1 can be sufficiently large so that

1

T

∫ t+T

t

∆(τ)dτ <
〈
∆(t)

〉
+ σ. (8)
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For θ chosen sufficiently small such that inequality (8) holds on the interval

τ1 ≤ t ≤ τ2,
d

dt
NS(t) ≥

(
m− σ∆(t)

)
NS(t) for t ∈ [τ1, τ2]. Thus,

NS(τ2) ≥ NS(τ1) exp

(∫ τ2

τ1

(m− σ∆(t)) dt

)
> NS(τ1)eρ0T .

But because of the choice of σ in equation (6), the preceding inequality leads
again to the contradiction, θ > σ. It only remains to conclude that NS(t) ≥
min{NS(0) , m/∆u} = 1/Nu > 0 for all t ∈ R+. Boundedness of NS(t) implies

that MS(t) is bounded by positive constants Nl ≤ MS(t) ≤ Nu . �X

In the next lemma, we show that (3) has a unique globally attractive peri-
odic solution.

Lemma 3.3. The solution MS(t) of the initial scalar value problem (3) con-
verges uniformly to a unique periodic solution MS(t) with period ω.

Proof. The initial value problem (3) has the solution

MS(t) = MS(t0)e−(t−t0)m + e−(t−t0)m

∫ t

t0

e(ζ−t0)m∆(ζ)dζ.

A recursive relationship between the average number of non-carriers at tk =
t0 + kω is given by

Mk+1 = MS(tk+1) = Mke
−ωm + e−ωm

∫ tk+1

tk

e(ζ−tk)m∆(ζ)dζ. (9)

Taking the change of variable η = ζ − kω and because ∆(ζ) is a periodic
function, then

Mk+1 = Mke
−ωm + e−ωm

∫ t0+ω

t0

e(η−t0)m∆(η)dη.

This defines a mapping S such that S(Mk) = Mk+1. If Mk1 and Mk2 are
different values of Mk, then∣∣S(Mk1)− S(Mk2)

∣∣ ≤ e−ωm∣∣Mk1 −Mk2

∣∣.
So, S is a contraction mapping and in virtue of the Banach fixed point theorem
[10] has a unique fixed point M∗S(tk∗) such that S

(
MS(tk∗+1)

)
= S

(
MS(tk∗)

)
=

MS(tk∗), or equivalently, S
(
MS(t0+k∗ω)

)
= MS(t0+(k∗+1)ω). This fixed point

can be found for any solution MS of the differential equation with arbitrary
initial time t∗0. The fixed point has the form:

MS(t∗0) =

(
1

eωm − 1

)∫ t∗0+ω

t∗0

exp

(∫ η

t∗0

m(τ)dτ

)
∆(η)dη. (10)
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This fixed point is a continuously differentiable function with respect to t∗0 and
leads to defining the function

MS(t) =
1

eωm − 1

∫ t+ω

t

e(η−t)m∆(η)dη, (11)

which satisfies the property:

MS(t+ ω) =

∫ t+2ω

t+ω

e(η−t−ω)m∆(η)dη

eωm − 1
=

∫ t+ω+ω

t+ω

e(η−t−ω)m∆(η − ω)dη

eωm − 1
= MS(t).

Hence MS is periodic with period ω, or what is the same MS(t) = MS(t+ kω)
(k ∈ Z+). Applying the substitution ζ = η + kω we arrive to:

MS(t) =

∫ t+(k+1)ω

t+kω

e(ζ−kω−t)m∆(ζ − kω)dζ

eωm − 1

=

∫ t+(k+1)ω−kω

t+kω−kω
e((ζ+kω)−kω−t)m∆((ζ + kω)− kω)dζ

2eωm/2(eωm/2 − e−ωm/2)/2

=

∫ t+ω

t

e(ζ−t)m∆(ζ)dζ

2eωm/2(eωm/2 − e−ωm/2)/2

=

∫ t+ω

t

e(ζ−t)m∆(ζ)dζ

2eωm/2 sinh (ωm/2)

=
1

2
csch

(ω
2
m
)

exp
(
−ω

2
m
)∫ t+ω

t

e(ζ−t)m∆(ζ)dζ (12)

What follows is to prove that all the solutions of (3) converges uniformly to the
periodic solution (12) and MS(t) is unique. The derivative of N(t) =

∣∣MS(t)−
MS(t)

∣∣ is

d

dt
N(t) = sgn

(
MS(t)−MS(t)

)((
∆(t)−mMS(t)

)
−
(
∆(t)−mMS(t)

))
= −mN(t).

The problem
d

dt
N(t) = −mN(t) with N(t0) =

∣∣MS(t0)−MS(t0)
∣∣ has solution

N(t) = N(t0)e−(t−t0)m ⇒ N(t+ kω) ≤ N(t0)e−kωm.

Having
∣∣MS(t+kω)−MS(t)

∣∣ ≤ N(t0)e−kωm for t ∈ [0, ω), it means that MS(t+

kω) converges uniformly to the periodic solution MS(t) as k −→∞ for t ∈ [0, ω).
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There cannot be two periodic solutions: the right member of equation (5) is
continuous in R+ and locally lipschitzian with respect to MS in

[
Nl , Nu

]
⊂ R+,

with Lipchitz constant m > 0, that is∣∣∣∣∣
2∑
i=1

(−1)i
[
∆(t)−mMS,i(t)

]∣∣∣∣∣≤ m∣∣MS,2(t)−MS,1(t)
∣∣

for all
(
t , MS,i

)
∈
[
t0 , ∞

)
×
[
Nl , Nu

]
, then there exists a unique solution

passing through (t0 ,MS(t0)) ([38], Theorem 3.3, p. 94). �X

Proposition 3.4. System (1) have a unique continuously differentiable den-
gue-free periodic solution of period ω, given by

x000 =
[
HS(t) 0 0 0 MS(t) 0 0

]>
, (13)

where HS(t)=H(0) and MS(t)=
1

2
csch

(ω
2
m
)

exp
(
−ω

2
m
)∫ t+ω

t

e(ζ−t)m∆(ζ)dζ.

And any DFS to (1) approaches this one as time becomes large.

Proof. By Lemmas 3.2 and 3.3, the Cauchy problem (3) admits a unique posi-
tive periodic solution (12), which is globally attractive. Since H′R(t) = −hHR(t)
then HR(t) = 0 is an equilibrium solution for the recovered population, more-
over HS(t) = H− HI(t)− HR(t) = H(0) at equilibrium. As dengue is originally
absent, it is not spreading in the ecosystem, so the condition is that g ≡ 0.
Notice that any solution of (3) ultimately lies in (2):∫ t

t0

e(ζ−t0)m∆(ζ)dζ ≤
∫ t

t0

e(ζ−t0)m∆udζ =
∆u

ml
e(t−t0)m − ∆u

ml
.

and substituting this into (9),

MS(t) <
∆u

m
e−(t−t0)m + e−(t−t0)m

(
∆u

ml
e(t−t0)m − ∆u

ml

)
=

∆u

ml
.

Thus system (1) admits a unique DF periodic solution given by (13). �X

4. Threshold dynamics

4.1. Basic Reproductive Number

Utilizing a notation similar to that in [58], we sort the compartments so that
the first three compartments correspond to infected individuals. Let

x> =
[
HI MI ME HS MS HR

]
=
[
x1 x2 x3 x4 x5 x6

]
and define
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• Fi: the rate of new infections in compartment i.

• V +
i : the rate of transfer individuals into compartment i by others means.

• V −i : the rate of transfer individuals out of compartment i.

System (1) can be written in the form:

dx

dt
= F (t,x)− V (t,x) = f(t,x),

where

F (t,x) = [F1(t,x) F2(t,x) · · · F6(t,x)]> =

[
qb

H
x2x4 0

pb

H
x1 x5 0 0 0

]>
, (14)

V (t,x) =
[
V1(t,x) V2(t,x) . . . V6(t,x)

]
= V −(t,x)− V +(t,x),

V −(t,x) =



(h+ r)x1
mx2

(c+m)x3
qb

H
x2x4 + hx4

pb

H
x1x5 +mx5

hx6


, V +(t,x) =



0

cx3
g∆(t)

hH

(1− g)∆(t)

rx1


and f(t,x) =



f1(t,x)

f2(t,x)

f3(t,x)

f4(t,x)

f5(t,x)

f6(t,x)


.

Linearizing system (1) around the disease free solution (13), we obtain the
partial derivative matrices

F (t) =

[
∂Fi(t,x

0)

∂xj

]
1≤i,j≤3

=

 0 qb 0

0 0 0
pbMS(t)

H 0 0

 and V (t) =

[
∂Vi(t,x

0)

∂xj

]
1≤i,j≤3

(15)

=

h+ r 0 0

0 m −c
0 0 c+m


For a compartmental epidemiological model based on an autonomous system,

the BRN is defined as the expected number of secondary cases produced by a
typical infected individual during its entire infectious period in a population
consisting of susceptibles only [57], and it is determined by the spectral radius of
the next-generation matrix (which is independent of time). Multiple researchers
have investigated the rich nonlinear effects caused by periodically varying rates
in epidemic models to the point of generalizing the definition of BRN for non-
autonomous systems as mentioned in section 1. Particularly, Wang and Zhao in
[58] extended the work of [57] for a large class of epidemic models in periodic
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environments. They established the next infection operator L : Cω −→ Cω
given by

(Lφφφ)(t) =

∫ ∞
0

Y (t, t− s)F (t− s)φφφ(t− s)ds (16)

where Cω be the ordered Banach space of all ω-periodic functions φφφ : R 7−→ R3,
which is equipped with the maximum norm and the positive cone C+

ω = {φφφ ∈
Cω : φφφ(t) ≥ 0,∀t ∈ R}, φφφ(s) ∈ Cω represents the initial distribution of infectious
individuals in this periodic environment, and Y (t, s) is the evolution operator
of the linear ω-periodic system:

dz

dt
= −V (t)z, (17)

which means the 3× 3 matrix Y satisfies

dY (t, s)

dt
= −V (t)Y (t, s), Y (s, s) = I3

for each t ≥ s, s ∈ R. Interpretation: Lφφφ is the distribution of accumulative new
infections at time t produced by all those infected individuals φφφ(s) introduced
before t, with kernel K(t, s) = Y (t, t−s)F (t−s); the coefficient Kij(t, s) in row
i and column j represents the expected number of individuals in compartment
Ii that one individual in compartment Ij generates at the beginning of an
epidemic per unit time at time t if it has been in compartment Ij for s units
of time, with I1 = HI, I2 = ME and I3 = MI [7].

Let r0 > 0, r0 is an eigenvalue of L if there is a non-negative eigenfunction
v(t) ∈ Cω such that

Lvvv = r0vvv.

Therefore, the basic reproduction number is defined as

R0 := ρ(L), (18)

the spectral radius of L.

4.2. Dengue extinction

Following the setting of [58] for non-autonomous compartmental epidemic mod-
els, we verify the following assumptions that show again that the model is
well-posed and makes biological sense.

(A1) For 1 ≤ i ≤ n, the functions Fi(t,x), V +
i (t,x) and V −i (t,x) are nonnega-

tive and continuous on R×Rn and continuously differential with respect
to x.
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(A2) There is a real number ω > 0 such that for each 1 ≤ i ≤ n, the functions
are ω-periodic in t. (This is new for periodic models.)

(A3) If xi = 0 then V −i = 0. In particular, we define that Xs is a disease-free
subspace, so that if x ∈ Xs, then V −i = 0 for i = 1, . . . , m̃ (m̃ is the
number of compartments of infected and carrier individuals.)

(A4) Fi = 0 for i > m̃.

(A5) If x ∈ Xs, then Fi = 0 and V +
i = 0 for i = 1, . . . , m̃.

(A6) Define an (n−m̃)×(n−m̃) matrix M̃(t) =

[
∂fi(t,x

0)

∂xj

]
m̃+1≤i,j≤n

and let

ΦM̃ (t) be the monodromy matrix of the linear ω-periodic system dy/dt =

M̃(t)y, we then have that ρ
(
ΦM̃ (ω)

)
< 1.

(A7) ρ
(
Φ−V (ω)

)
< 1, where Φ−V (t) is the monodromy matrix of (17).

With m̃ = 3 and n = 6, it is simple to check the assumptions (A1)-(A5) from
observation of the vectors F and V in (14). Now it remains to verify conditions
(A6) and (A7).

We know that (1) has the disease-free periodic solution (13), so to verify
assumption (A6), we define

M̃(t) =

[
∂fi(t,x

0)

∂xj

]
4≤i,j≤6

=


−qb

H
x2 − h 0 0

0 −pb
H
x1 −m 0

0 0 −h


∣∣∣∣∣
x=x0

(19)

and solving the system dy/dt = M̃(t)y yields the principal fundamental matrix:

ΦM̃ (t) =

e−ht 0 0

0 e−mt 0

0 0 e−ht

 .
Clearly Φ−1

M̃
(0) = I3, and the monodromy matrix is the principal fundamental

matrix evaluated at the period (ΦM̃ (ω)), thus (A6) is satisfied.

From matrices (15) and the evolution operator of the linear system (17),
that is

dY (t, s)

dt
=

−(h+ r) 0 0

0 −m c

0 0 −(c+m)

Y (t, s), Y (s, s) = I3 (20)
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for each t ≥ s (s ∈ R), then (A7) above must be verified. The eigenvalues of
−V (t) are

s0 = −(h+ r), s1 = −m and s2 = −(c+m).

A triplet of corresponding eigenvectors is1

0

0

 ,
0

1

0

 and

 0

−1

1

 .
We create the matrices

P =

1 0 0

0 1 −1

0 0 1

 and P−1 =

1 0 0

0 1 1

0 0 1

 .
Under the coordinate transformation ηηη = P−1z, we obtain the uncoupled linear
system

η̇̇η̇η = −P−1V (t)Pηηη =

s0 0 0

0 s1 0

0 0 s2

ηηη
whose general solution is given by

ηηη(t) = diag
[
es0t , es1t , es2t

]
d,

where d is a constant vector. Since z = Pηηη and d = P−1c, it follows that (17)
has a fundamental matrix:

Ψ(t) = Pdiag
[
es0t , es1t , es2t

]
P−1 =

es0t 0 0

0 es1t es1t − es2t
0 0 es2t


with inverse

Ψ−1(t) =

e−s0t 0 0

0 e−s1t e−s1t − e−s2t
0 0 e−s2t

 ,
but Ψ(t) is not a principal fundamental matrix at t = s. Using that

Ψ(t)Ψ−1(s) =

es0t 0 0

0 es1t es1t − es2t
0 0 es2t

e−s0s 0 0

0 e−s1s e−s1s − e−s2s
0 0 e−s2s


=

es0(t−s) 0 0

0 es1(t−s) es1(t−s) − es2(t−s)

0 0 es2(t−s)


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is also a fundamental matrix which satisfies Ψ(s)Ψ(s)
−1

= I3, we define the
evolution operator by

Y (t, s) =

es0(t−s) 0 0

0 es1(t−s) es1(t−s) − es2(t−s)

0 0 es2(t−s)

 .
The monodromy matrix Φ−V (t) of the system (17) equals Y (t, 0), ∀t ≥ 0. So
one need only consider the monodromy matrix evaluated at the period; the
roots of the equation det

[
Φ−V (ω)− λI

]
= 0 are λj = esjω,

(
j = 1, 2, 3

)
. Since

<(sj) < 0 for all j, the spectral radius becomes max
j
{|exp (sjω)|} < 1 and

clearly (A7) is true.

Furthermore, in order to characterize R0 for periodic systems, we consider
the following linear ω-periodic system

ẇ =

(
1

λ
F (t)− V (t)

)
w(t) t ∈ R+, λ ∈ (0,∞). (21)

Let W (t, s, λ), t ≥ s, s ∈ R, be the evolution operator of the system (21) on
R3. It is clear that

W (t, 0, 1) = ΦF−V (t), ∀t ≥ 0.

We need other results to analyze the stability of the disease-free solution in this
section.

Lemma 4.1 (Lemma 2.1 in [58]). Assume that (A1)-(A7) hold.

(i) ρ (W (ω, 0, λ)) = 1 has a positive solution λ0, then λ0 is an eigenvalue of
L, and hence R0 > 0.

(ii) If R0 > 0, then λ = R0 is the unique solution of ρ (W (ω, 0, λ)) = 1.

(iii) If R0 = 0 if and only if ρ (W (ω, 0, λ)) < 1, for all λ > 0.

Lemma 4.2.

max
{(

MS −MS

)∞
,
(
HS −H(0)

)∞} ≤ 0.

Proof. The differential equation of non-carrier mosquitoes implies that

d

dt
MS(t) = (1− f)∆− pb

H
HIMS −mMS

≤ (1− f)∆(t)−mMS(t).
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Since x000 =
[
H 0 0 0 MS(t) 0 0

]
is a solution of the system (1), then

d

dt
MS(t) = (1− f)∆−mMS.

Therefore,

d

dt

(
MS(t)−MS(t)

)
≤ −m

(
MS(t)−MS(t)

)
.

Integrating this inequality over [t0 , t], then

MS(tn)−MS(tn) ≤
(
MS(0)−MS(0)

)
e−mtn .

Now, by applying the fluctuation lemma [34], there is a sequence
{
tn
}

such that

tn → ∞ and
(
MS(tn) −MS(tn)

)
→
(
MS(tn) −MS(tn)

)∞
as n → ∞. Letting

n→∞ and knowing that
(
MS −MS

)
(t) is bounded for all t ≥ 0 because it is

a solution of equation (3), it follows that(
MS −MS

)∞ ≤ 0.

Arguing as previosly, we deduce that

d

dt

(
HS(t)−HS(0)

)
≤ −h

(
HS(t)−HS(0)

)
and

(
HS −HS(0)

)∞ ≤ 0. Lemma 4.2 now follows straightforwardly. �X

Lemma 4.3 (Lemma 2.1 in [46]). Let A(t) be a continuous, cooperative, ir-
reducible and ω-periodic matrix function, let ΦA(t) be the fundamental matrix
solution of

ẋ = A(t)x (22)

and let p =
1

ω
ln (ρ (A(ω))), then there exists a positive ω-periodic function v(t)

such that eptv(t) is a solution of (22).

Proposition 4.4 ([58]). Assume that (A1)-(A7) hold.

(i) R0 = 1⇐⇒ ρ
(
ΦF−V

)
= 1.

(ii) R0 < 1⇐⇒ ρ
(
ΦF−V

)
< 1.

(iii) R0 > 1⇐⇒ ρ
(
ΦF−V

)
> 1.

Proof. (i) If R0 = 1, then from Lemma 4.5(ii), we have ρ(W (ω, 0, 1)) =
ρ
(
ΦF−V (ω)

)
= 1. Otherwise, if ρ

(
ΦF−V (ω)

)
= 1, then Lemma 4.5 (i)

and (ii) imply that R0 = 1.
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(ii) (a) Assume that R0 > 1. Since R0 is positive and the linear operator L is
compact and positive, then thanks to Krein-Rutman theorem (see, e.g.,
[32], Theorem 7.1), R0 is an eigenvalue of L with a positive eigenfunction
y in Cω. Thus, for some t0 ∈ [0, ω], y(t0) > 0 and we have

ẏ =
(
F (t)− V (t)

)
y +

(
1

R0
− 1

)
F (t)y (23)

with Fy(t) 6= 000 for all t ∈ R. Moreover, by applying the constant-variation
formula to equation (23), we obtain

y(t0)−W (t0 + ω, t0, 1) = k

with

k =

(
1

R0
− 1

)∫ t0+ω

0

W (t0 + ω, s, 1)F (s)y(s)ds.

Note that if the matrix V (t) is irreducible, then W (t0 +ω, s, 1) is strongly
positive for each t > s, s ∈ R and k� 000 if R0 > 1. Hence,

−y(t0) +W (t0 + ω, t0, 1) = −k� 000 in R4.

Since −y(t0) � 000, then from ([32], Theorem 7.3) ρ(W (t0 + ω, t0, 1)) =
ρ
(
ΦF−V (ω)

)
> 1.

ii (b) Assume that ρ
(
ΦF−V (ω)

)
> 1. Thus we have ρ(W (ω, t0, 1)) =

ρ
(
ΦF−V (ω)

)
> 1 and from Lemma 4.5(iii) we get R0 > 0, and of course

(23) is still valid. Hence, if R0 ∈ (0, 1) and in the case where V is irre-
ducible, it follows that W (t0 + ω, t0, 1) = ρ

(
ΦF−V (ω)

)
< 1 that leads a

contradiction, so R0 > 1.

(iii) is a consequence of the conclusions (i) and (ii) above.

�X

Proposition 4.5. Let R0 be defined as (18), then the disease free periodic
solution (3.4) is locally asymptotically stable if R0 < 1, and unstable if R0 > 1.

Proof. Let J (t) be the Jacobian matrix of (1) evaluated at x000. Then, we have

J (t) =

[
F (t)− V (t) O3

J3(t) J4(t)

]
where F and V are the matrices defined in (15), J4(t) = M̃(t) is the matrix
defined in (19), and

J3(t) =


0 −qb

H
x4 0

−pb
H
x5 0 0

r 0 0


∣∣∣∣∣
x=x0
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In view of assumption (A6), ρ
(
ΦJ4

(ω)
)
< 1, so that the stability of the DFS

depends on the eigenvalues of ΦF−V (ω); if ρ
(
ΦF−V (ω)

)
< 1 then x0 is stable,

but, if ρ
(
ΦF−V (ω)

)
> 1 then x0 is unstable [51]. Thus, thanks to Proposition

4.5, x0 is locally asymptotically stable if R0 < 1 and unstable if R0 > 1. �X

We are now in conditions to state a result about global stability of the DFS.

Proposition 4.6. The DFS (3.4) of system (1) is globally asymptotically stable
if R0 < 1.

Proof. By Proposition 4.5, if R0 < 1 then x000 =
[
H 0 0 0 MS(t) 0 0

]>
is locally asymptotically stable, so it is sufficient prove that x000 attracts all non-
negative solutions x(t) of (1). On the other hand, given ε > 0 and by Lemma
4.2, we have (

MS −MS

)∞
= lim
t→∞

sup
τ≥t

(
MS(τ)−MS(τ)

)
= L ≤ 0,

then there exists a N > 0 such that for all τ3 > N

−ε < sup
t≥τ3

(
MS(t)−MS(t)

)
− L < ε,

this implies that sup
t≥τ3

(
MS(t)−MS(t)

)
< L + ε ≤ ε. Then, from definition of

supremum we have MS(t) ≤ MS(t) + ε for all t ≥ τ3. Therefore, by the second,
fifth and sixth equations in (1) we have

ḢI ≤ qbMI − (h+ r)HI

ṀI= cME −mMI

ṀE ≤
pb

H
HI

(
MS + ε

)
− (c+m)ME

(24)

Let

M1(t) =


0 0 0

0 0 0
pb

H
0 0

 .
Consider the perturbated subsystem

ẇ1 = qbw2 − (h+ r)w1

ẇ2 = cw3 −mw2

w3 =
pb

H
w1

(
MS + ε

)
− (c+m)w3

(25)
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or, in matrix language,ẇ1

ẇ2

ẇ3

 =
(
F (t)− V (t) + εM1(t)

)w1

w2

w3


with F and V defined in (15). Matrix F − V + εM1(t) is ω-periodic, cooper-
ative, irreducible and continuous. By Lemma 4.3, for all s > 0, the function
sep(t−τ0)v(t− τ0) is also a solution of system (25) with initial condition sv(0)
at t = τ0.

Choose a t > t1 and s > 0 such that
[
H I(t) ME(t) MI(t)

]> ≤ sv(0),
then from (24)

d

dt
y =

d

dt

[
HI ME MI

]> ≤ (F − V )y + εM1y

and applying comparison principle ([33], Theorem B.1), we have y ≤ s ep(t−t)

v(t− t) for all t ≥ t.
From Proposition 4.5 we conclude that ρ

(
ΦF−V

)
< 1 if and only if R0 < 1.

By the continuity of the spectrum for matrices ([37], Section II.5.8), there exists

a ε > 0 small enough such that ρ
(

ΦF−V+εM1(t)

)
< 1, consequently p < 0. So,

utilizing positivity of solutions and comparison theorem [40]:

0 ≤ lim
t→∞

HI(t) ≤ lim
t→∞

s1e
p(t−t)v1(t− t) = 0. (26)

Similarly for ME(t) and MI(t):

lim
t→∞

ME(t) = 0, lim
t→∞

MI(t) = 0. (27)

We need prove that HS(t) approaches to H(0). At infection free solution HR(t) =

0, where HR satisfies the equation

d

dt

(
HR −HR

)
= rHI − h

(
HR −HR

)
.

Due to (26) and given ε1 > 0 we can find a τ4 > 0 such that HI < ε1 for t > τ4,
then

d

dt
HR ≤ rε1 − hHR.

Multiplying in both sides by eht and integrating this inequality over [τ4 , t] we
get

HR(t) ≤ HR(τ4)e−h(t−τ4) +
rε1
h

(
1− e−h(t−τ4)

)
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and H∞R ≤
rε1
h

. As ε1 is arbitrarily small then H∞R ≤ 0. For ε2 > 0, we can

find a τ5 > 0 such that HR(t) ≤ ε2/2 for t ≥ τ5. Also, from (26), we can find a
τ4 > 0 with HI < ε2/2 for t > τ4. Let t > τ6 = max{τ4, τ5}, we have

HS(t) = H(0)−HI(t)−HR(t) ≥ H(0)− ε2,

or equivalently HS(t) − H(0) ≥ −ε2 with ε2 arbitrarily small, and this implies
that (HS −H(0))∞ ≥ 0. We conclude by comparison and utilizing Lemma 4.2
that 0 ≥ (HS −H(0))

∞ ≥ (HS −H(0))∞ ≥ 0, and so lim
t→∞

HS(t) = HS(0).

Finally, since M(t) (total size of mosquito population) is a solution of equa-
tion (3) we conclude that lim

t→+∞

(
M(t)−MS(t)

)
= 0 and

MS(t)−MS(t) = M(t)−MS(t)−ME(t)−MI(t)→ 0

as t → ∞, or equivalently lim
t→∞

MS(t) = M S(t). Therefore the DFS is globally

attractive. �X

5. Numerical computation of R0 and simulations

In this section we present a numerical algorithm and provide some numerical
simulations to illustrate the results obtained in the propositions. A efficient
numerical method for calculating R0 for compartmental epidemiological models
based on the fundamental formula (16) was propused by Posny and Wang [50].
Assuming that the kernel of L is a periodic function of t of period ω, they
discretize the integral operator using the trapezoidal rule. Some characteristic
details of the method are the following:

Operator (16) and ω-periodicity of φφφ implies

(Lφφφ)(t) =

∫ ω

0

U(t, s)φφφ(t− s)ds,

where

U(t, s) =

∞∑
j=0

Y (t, t− s− jω)F (t− s− jω) =

( ∞∑
j=0

Y (t, t− s− jω)

)
F (t− s).

According to standard theory of linear periodic systems [28], there exists a
C > 0 and k > 0 such that

‖Y (t, s)‖ ≤ Ce−k(t−s), ∀t ≥ s with s ∈ R.

It then follows that

‖Y (t, t − s − jω)F (t − s)‖ ≤ C‖F (t − s)‖e−k(s+jω), ∀t ∈ R, s ≥ 0 and j =
0, 1, 2, . . .
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Hence, U(t, s) may approximate by a finite sum:

U(t, s) ≈
( d∑
j=0

Y (s, t− s− jω)

)
F (t− s)

for some integer d > 0, owing to the exponential decay of the terms in the
summation. In this model

U(t, s) =

∞∑
j=0


0 qb exp

(
s0(s + ωj)

)
0

pb
(

exp
(
s1(s + jω)

)
− exp

(
s2(s + jω)

))MS(t− s)

H
0 0

pb exp
(
s2(s + jω)

)MS(t− s)

H
0 0


(28)

The numerical method transforms the integral operator eigenvalue problem into

a matrix eigenvalue problem of the form ω
n Âφ̃̃φ̃φ = λφ̃̃φ̃φ, where n is the number of

nodes that uniformly partition the interval [0 , ω], φ̃̃φ̃φ = [φφφ(t0)φφφ(t1) · · · φφφ(tn−1)]>

is a (nm̃)× 1 vector, and

Â=

[
Âij =

1

2
(1 + sgn(i− j))U(ti−1, ti−j)+

1

2
(1− sgn(i− j))U(ti−1, tn+i−j)

]
1≤i,j≤n

(29)

is a (nm̃)× (nm̃) matrix. Hence,

R0 ≈
ω

n
ρ(Â) (30)

Remark 5.1. Let us understand qualitatively the term MS(t− s)/H, t ≥ s, in
matrix (28). This expresses seasonal variations of the so-called “vector density”,
defined as average number of vectors (female mosquitoes) per one human host
[20]. Due to the cyclical pattern of mosquito population density, in winter the
vector density drops to very low levels, below the R0 = 1 threshold for trans-
mission; followed by winter and preceding summer, the vector density begins
to increase until it reaches a critical level at which the threshold crosses R0 = 1
and transmission begins. Control campaigns have been mainly interested in re-
ducing this important ratio (through larval control measures and elimination of
breeding sites), in order to set vector densities below the threshold of epidemic
transmission.

Remark 5.2. It is possible to show that R0 for the periodic environment
converges to the standard basic reproduction number for the time-averaged
non-autonomous epidemic system, that is, the one in which the parameters in
system (1) are replaced by their long-time averages.

Lemma 3.2 implies that

Nl ≤ lim inf
t−→∞

MS(t) ≤ lim sup
t−→∞

MS(t) ≤ Nu,
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where we can choose

Nl =

(
∆

m

)
∞

and Nu =

(
∆

m

)∞
.

Since the time-averaged non-autonomous epidemic system has an free-dengue

equilibrium point, x̃̃x̃x000 =
[
H 0 0 MS 0 0

]>
, one has in that model that

Nu = Nl, and then MS =
〈
∆(t)

〉
/m.

Furthermore, using the formula of the geometric series, the matrix function
(28) converges to

U(t, s) =

∞∑
j=0


0 qb exp

(
s0(s + ωj)

)
0

pb
(

exp
(
s1(s + jω)

)
− exp

(
s2(s + jω)

))MS(t− s)

H
0 0

pb exp
(
s2(s + jω)

)MS(t− s)

H
0 0



=



0 qb

∞∑
j=0

exp
(
s0(s+ωj)

)
0

pbMS(t−s)
H

∞∑
j=0

(
exp

(
s1(s+jω)

)
−exp

(
s2(s+jω)

))
0 0

pbMS(t−s)
H

∞∑
j=0

exp
(
s2(s+jω)

)
0 0


(31)

=



0
qb exp

(
s0s
)

1− exp
(
ωs0

) 0

pbMS(t− s)

H

(
exp

(
s1s
)

1− exp
(
ωs1

) − exp
(
s2s
)

1− exp
(
ωs2

)) 0 0

pbMS(t− s)

H

(
exp

(
s2s
)

1− exp
(
ωs2

)) 0 0


.

Under positivity of the matrix function U(t, s), there exists a unique real
number R0 such that there exists a nonnegative, nonzero, continuous and ω-
periodic vector function vvv(t) ∈ Cω such that

∫ ω

0

U(t, s)vvv(t− s)ds = R0 vvv(t).

Notice that if MS(t) is a constant MS, then U(t, s) does not depend on t, i.e.
U(t − s) = U(s). In this case, considering a constant function vvv(t) equal to a

nonnegative eigenvector of the nonnegative matrix

∫ ω

0

U(s) ds, we see that R0 is

the spectral radius of this matrix, which is generally called the next-generation
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matrix ([15], p. 74). More precisely, we get

R0 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣



∫
ω

0

(
qb exp

(
s0s
)

1− exp
(
ωs0

)) ds

∫
ω

0

(
pbMS

H

( exp
(
s1s
)

1− exp
(
ωs1

)− exp
(
s2s
)

1−exp
(
ωs2

) ))ds



1/2
∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣

 qb exp

(
s0s
)∣∣∣s=ω
s=0

s0
(
1− exp

(
ωs0

))

pbMS

H

 exp
(
s1s
)∣∣∣s=ω
s=0

s1
(
1− exp

(
ωs1

)) − exp
(
s2s
)∣∣∣s=ω
s=0

s2
(
1− exp

(
ωs2

))




1/2
∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣
(
−
(

qb

h + r

)(
pbMS

H

(
1

m
−

1

(c + m)

)))1/2
∣∣∣∣∣∣

=

√
RHRM,

where

RH =
b p

(h+ r)H
(32)

and

RM =
b q c

m(c+m)

〈
∆(t)

〉
m

. (33)

To avoid misunderstanding, let us recall that some authors call R0 what appears
here as R2

0. This point is discussed briefly in ([31], sec. 2.1). Our definition of R0

is consistent with that given for autonomous compartmental epidemic models.

Remark 5.3. The factor (32) is the number of humans infected by a car-
rier vector during its period of portability of the dengue virus strain in a
population of only susceptibles, and the factor (33) is the number of vectors
that become carriers by biting an infected human in the vector population,
all of them being non-carriers. Suppose that an infectious mosquito is intro-
duced into a completely susceptible, non-carrier population of humans and
mosquitoes, respectively. This infectious carrier mosquito bites an average num-
ber of (qb/m)

(〈
∆(t)

〉
/m
)

susceptible humans during the infectious period of
the vector; q b/m is the number of bites per mosquito. Afterwards, these hu-
mans are bitten on average by pb/ ((h+ r)H) non-carrier mosquitoes during the
infectious period 1/(h+ r). Finally, the probability that these non-infectious
carrier mosquitoes survive the extrinsic incubation period and become infec-
tious carrier mosquitoes is given by c/(c+m). The introduction of an infectious
human follows a similar interpretation. Therefore, R2

0 = RHRM is the average
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number of secondary infected humans/mosquitoes produced by a typical infec-
tious human or mosquito introduced into a dengue-free human and mosquito
ecosystem, and determines whether dengue disappears or persists in the popu-
lation [16].

The ordinary differential equations (1) are integrated utilizing MATLAB’s
inbuilt routine ode45, considering the parameter values and initial conditions
provided in Table 1.

Table 1. Parameters and initial data described in the model and their ranges of
possible values.

Parameter Value Range Source Dimensions Parameter Value Range Source Dimensions

m See text [1/20, 1/4] [21, 17] day−1 h (75.58× 365)−1 — [14] day−1

r 1/7 [0.07, 0.25] [42, 29] day−1 g g0 [0, 0.13] [1] day−1

b 1/3 [0.3, 1] [49, 23] day−1 δ 35000 Assumed Dimensionless

p 0.51 [0.5, 1] [3, 54] Dimensionless ε 0.72 [0, 1] Assumed Dimensionless

q 0.40 [0.1, 1] [3, 9] Dimensionless ψ −2.0 — Assumed Dimensionless

c 0.10 [0.08, 0.13] [42] day−1 H 299712 — [13] Dimensionless

Initial conditions HS0 HI0 HR0 MS0 ME0 MI0 g0

IC1 90008 0 209704 599467 0 33 5.0× 10−7

IC2 90005 4 209703 599468 32 0 1.0× 10−6

IC3 90010 3 209699 599469 0 31 1.5× 10−6

IC4 90013 3 209696 599470 30 0 2.0× 10−6

For all numerical simulations, seasonality is represented through a periodic
vector recruitment rate with a yearly period [53]:

∆(t) = δ
(
1 + ε cos(ωt+ ψ)

)
(34)

where ω = 2π
365 corresponds to a period of one year, δ represents the average

vector recruitment rate, ψ denote the phase shift and ε defines the amplitude
of the seasonal variations (degree of periodic forcing). To ensure the positivity
of ∆(t), it is required that 0 < ε < 1.

We set d = 100 and n = 1000 in the numerical evaluation of the next in-
fection operator, generate a 3n × 3n matrix Â in the form of (29), determine
its spectral radius and get a reasonable approximation of R0 by (30). In figure
2, we plot R0 when the parameter m is variable and the other parameters re-
main fixed. Consistent with the biological interpretation of R0, m is inversely
proportional to m, the graph of R0 versus m is seen as a convex equilateral
hyperbola in the first quadrant. In particular, R0 ≈ 0.8545 if m = 1/10, R0 ≈ 1
if m ≈ 1/11.382 and R0 ≈ 1.3345 if m = 1/14.5. Thus, whenever the mortal-
ity rate is smaller than 1/11.382 mosquitoes per day, dengue persists in the
community.
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Figure 2. The graph of the BRN when m varies.

The numerical results in figures ??�3 and 4�4 show us four solutions of the system (1)
when R0 < 1 and R0 > 1, respectively. The planes on the left-hand side in each
figure illustrate the evolution of disease states in humans and mosquitoes during
a calendar year, while in the planes on the right-hand side we have extended
the time to more than a year in the simulations to numerically demonstrate
propositions 3.4 and 4.6. When R0 < 1, the effect of seasonal variation can be
described as follows: in the human population, outbreaks occur in less than
two weeks, shortly after the disease is introduced into the community, then
the number of infected people decreases almost exponentially and the disease
disappears, similar to the behavior observed in mosquito populations carriers;
meanwhile, the rate of variation in both the susceptible population (which
grows) and the recovered population (which decreases) is slow, being necessary
to extend the time scale to appreciate an asymptotic behavior of the trajectories
of these population; in relation to the densities of mosquito populations that
make transmission possible, they are higher in the first season of the year that
covers the first three months with the highest incidence of dengue in humans,
but after this season their sizes become too small to sustain outbreaks of dengue.
See Figure 3a-b.

When R0 > 1, the effect of seasonal variation can be described as follows:
the highest annual daily number of dengue cases occurs around 200 days, and
after the peak and before 500 days, a daily case is not exceeded; the average
number of susceptible people grows monotonously from the beginning of the
outbreak, until several years later growth stops and over time oscillations be-
tween 100 thousand and 250 thousand continue; the average number of people
recovered decreases monotonically from the beginning of the outbreak, until
several years later stops continuously decreasing and describes oscillations be-
tween 150 thousand and 200 thousand. We notice in an annual cycle that human
outbreaks are in phase with the abundance of carrier mosquitoes, exhibit a lag
with the bottleneck of non-carrier mosquitoes, and transmission is unfavorable
when the non-carrier vector population begins to decline. See Figure 4�4a-b.
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The numerical results in Figure 5 show solutions of the initial value problem
(1) if R0 < 1 and R0 > 1, respectively, when g varies. Eventually, the percent
increase in VT generates the reemergence of dengue and flocks of non-infectious
carrier mosquitoes in the environment, even in a situation of extinction of the
disease (R0 < 1), which implies endemicity despite seasonal variations (see
Subfigure 5a). If R0 > 1, the increase in the average number of viable female
eggs infected vertically induces a decrease in the densities of mosquitoes and
humans without the virus within their organism and magnifies the levels of
non-carrier mosquitoes; successively lower values of g produce a delay between
progressively higher peaks in cases of dengue and the periods of the epidemic
outbreak are shortened (see Subfigure 5a).

6. Conclusion

This model for dengue is based on a deterministic non-autonomous compart-
mental model of dengue transmission that incorporate transovarial transmission
and a seasonal recruitment rate of mosquito population depending explicitly on
the time variable and defined by a periodic function, in order to emulate these
diverse seasonal oscillations in vector density and dengue overwintering. Utiliz-
ing the standard methodology applicable to non-autonomous epidemiological
models we were able to determine well-posedness, existence of a dengue-free
periodic solution and the basic reproduction number associated to the model.

It was further shown that the disease-free solution is globally asymptoti-
cally stable if the basic reproduction number of the model is less than one.
The epidemiological implication of this result is that the disease can be effec-
tively controlled if the control strategies implemented in the community can
bring (and maintain) the reproduction number to a value less than one. In
other words, this result shows that bringing (and maintaining) the reproduc-
tion number to a value less than one is necessary and sufficient for the effective
control of the disease in the community. Simulation analysis was performed
about endemic and epidemic dynamics, confirming that the disease completely
dies out if R0 < 1 and persists if R0 > 1.

Likewise, the horizontal transmission of dengue between humans and mos-
quitoes is a determining factor in the epidemiology of this disease, but it has also
been shown that Aedes aegypti is capable of transmitting the dengue virus to
the progeny after it has been been invaded by the virus [60, 24], suggesting that
vertical transmission is an important mechanism of sustained virus circulation
in vector populations during adverse periods for horizontal transmission. The
consequence of the vertical transmission process is that carrier vectors continue
to emerge (during favorable habitat conditions) even when there are no infected
hosts, since the infected eggs can survive the dry season and re-emerge as carrier
adult mosquitoes. This fact was corroborated numerically, where the incidence
of vertical transmission suddenly increases the endemic amount of infectious
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vectors and humans, which favors the persistence of the virus in the areas with
enough breeding-sites and permanent pupal productivity.
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(b) Distribution of the mosquito population.

Figure 3. Trajectories when R0 < 1, g = 0 and initial conditions: IC1--, IC2-
., IC3- - and IC4.. (see Table 1). The solutions converges to the

dengue-free solution *.
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Figure 4. Trajectories when R0 >, g = 0 and initial conditions: IC1--, IC2-.,

IC3-- and IC4.. (see Table 1). The long-term behaviors illustrate that
the disease is endemic.
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(a) Distribution of the populations when R0 < 1.

(b) Distribution of the populations when R0 > 1.

Figure 5. Solution curves of the system (1) subject to IC1 (see Table 1) when R0 6= 1

with g = 0.0 ������, g = 5.0× 10−7 --, g = 1.0× 10−6 -., g = 1.5× 10−6

-- and g = 2.0× 10−6 ...
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