Publicado

2023-04-17

On the Fischer matrices of a group of shape 21+2n + :G

Sobre las matrices de Fischer de un grupo de la forma 21+2n + :G

DOI:

https://doi.org/10.15446/recolma.v56n2.108379

Palabras clave:

split extension, extra-special p-group, irreducible projective characters, Schur multiplier, inertia factor groups, Fischer matrices (en)
extensión escindida, p-grupo extra especial, caracteres proyectivos irreducibles, multiplicador de Schur, inertia factor groups, matrices de Fischer (es)

Descargas

Autores/as

  • Abraham Love Prins Nelson Mandela University

In this paper, the Fischer matrices of the maximal subgroup G = 21+8+ : (U4(2):2) of U6(2):2 will be derived from the Fischer matrices of the quotient group Q = G/Z(21+8+) = 28 : (U4(2):2), where Z(21+8+) denotes the center of the extra-special 2-group 21+8+. Using this approach, the Fischer matrices and associated ordinary character table of G are computed in an elegantly simple manner. This approach can be used to compute the ordinary character table of any split extension group of the form 21+2n+ :G, n ∈ N, provided the ordinary irreducible characters of 21+2n+ extend to ordinary irreducible characters of its inertia subgroups in 21+2n+:G and also that the Fischer matrices M(gi) of the quotient group 21+2n+ :G/Z(21+2n+) = 22n:G are known for each class representative gi in G.

En este artículo, las matrices de Fischer del subgrupo maximal G = 21+8+ : (U4(2):2) de U6(2):2 serán derivadas a partir de las matrices de Fischer del grupo cociente Q = G/Z(21+8+) = 28 : (U4(2):2), donde Z(21+8+) denota el centro del grupo 2-extra especial 21+8+. Usando este enfoque, las matrices de Fischer y la tabla de caracteres asociadas de G son calculados de una manera elegante y simple. Este enfoque se puede utilizar para calcular la tabla de caracteres de cualquier extensión escindida de la forma 21+2n+ :G, n ∈ N, siempre y cuando los caracteres irreducibles ordinarios de 21+2n+ se extiendan a caracteres irreducibles ordinarios de sus subgrupos de inercia en 21+2n+:G y también que las matrices de Fischer M(gi) del grupo cociente 21+2n+ :G/Z(21+2n+) = 22n:G sean conocidas para cada representante de clase gi en G.

Referencias

A. B. M. Basheer and J. Moori, A survey on Clifford-Fischer theory, London Mathematical Society Lecture Notes Series 422 (2015), 160{172, Cambridge University Press. DOI: https://doi.org/10.1017/CBO9781316227343.009

A. B. M. Basheer and J. Moori, On a Maximal Subgroup of the Affine General Linear Group of GL(6, 2), Advances in Group Theory and Applications 11 (2021), 1-30.

W. Bosma and J. J. Canon, Handbook of Magma Functions, Department of Mathematics, University of Sydney, November 1994.

J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson, Atlas of Finite Groups, Oxford University Press, Oxford, 1985.

B. Fischer, Clifford-matrices, Progr. Math. 95 (1991), 1-16, Michler G. O. and Ringel C.(eds), Birkhauser, Basel. DOI: https://doi.org/10.1007/978-3-0348-8658-1_1

R. L. Fray, R. L. Monaledi, and A. L. Prins, Fischer-Clifford matrices of a group 28:(U4(2):2) as a subgroup of O+ 10(2), Afr. Mat. 27 (2016), 1295-1310. DOI: https://doi.org/10.1007/s13370-016-0410-7

D. Gorenstein, Finite Groups, Harper and Row Publishers, New York, 1968.

The GAP Group, GAP --Groups, Algorithms, and Programming, 2020, Version 4.11.0; http://www.gap-system.org.

C. Jansen, K. Lux, R. Parker, and R. Wilson, An Atlas of Brauer Characters, Clarendon Press, Oxford, 1995.

G. Karpilovsky, Group Representations: Introduction to Group Representations and Characters, Vol. 1 Part B, North - Holland Mathematics Studies 175, Amsterdam, 1992.

K. Lux and H. Pahlings, Representations of Groups: A Computational Approach, Cambridge University Press, Cambridge, 2010. DOI: https://doi.org/10.1017/CBO9780511750915

Z. Mpono, Fischer-Clifford Theory and Character Tables of Group Extensions, PhD Thesis, University of Natal, Pietermaritzburg, 1998.

H. Pahlings, The character table of 21+22+ Co2, J. Algebra 315 (2007), 301-325. DOI: https://doi.org/10.1016/j.jalgebra.2007.05.011

A. L. Prins, A maximal subgroup 24+6:(A5 x 3) of G2(4) treated as a non-split extension G = 26. (24:(A5 x 3)), Advances in Group Theory and Applications 10 (2020), 43-66.

A. L. Prins, Computing the conjugacy classes and character table of a non-split extension 26.(25:S6) from a split extension 26:(25:S6), Aims Mathematics 5 (2020), no. 3, 2113-2125, DOI: 10.3934/math.2020140. DOI: https://doi.org/10.3934/math.2020140

A. L. Prins, On a two-fold cover 2:(26.G2(2)) of a maximal subgroup of Rudvalis group Ru, Proyecciones (Antofagasta, On line) 40 (2021), no. 4, 1011-1029, DOI: 10.22199/issn.0717-6279-4574. DOI: https://doi.org/10.22199/issn.0717-6279-4574

A. L. Prins, R. L. Monaledi, and R. L. Fray, On a subgroup 26:(25:S6) of Fi22, Thai Journal of Mathematics, in press.

A. L. Prins, R. L. Monaledi, and R. L. Fray, On a maximal subgroup (29:L3(4)):3 of the automorphism group U6(2):3 of U6(2), Afr. Mat. 31 (2020), 1311-1336, https://doi.org/10.1007/s13370-020-00798-x. DOI: https://doi.org/10.1007/s13370-020-00798-x

T. T. Seretlo, Fischer Clifford Matrices and Character Tables of Certain Groups Associated with Simple Groups O+ 10(2), HS and Ly, Phd thesis, University of KwaZulu Natal, 2011.

N. S. Whitley, Fischer Matrices and Character Tables of Group Extensions, Msc thesis, University of Natal, Pietermaritzburg, 1994.

R. A. Wilson, P.Walsh, J. Tripp, I. Suleiman, S. Rogers, R. Parker, S. Norton, S. Nickerson, S. Linton, J. Bray, and R. Abbot, ATLAS of Finite Group Representations, http://brauer.maths.qmul.ac.uk/Atlas/v3/.

Cómo citar

APA

Prins, A. L. (2023). On the Fischer matrices of a group of shape 21+2n + :G. Revista Colombiana de Matemáticas, 56(2), 189–211. https://doi.org/10.15446/recolma.v56n2.108379

ACM

[1]
Prins, A.L. 2023. On the Fischer matrices of a group of shape 21+2n + :G. Revista Colombiana de Matemáticas. 56, 2 (abr. 2023), 189–211. DOI:https://doi.org/10.15446/recolma.v56n2.108379.

ACS

(1)
Prins, A. L. On the Fischer matrices of a group of shape 21+2n + :G. rev.colomb.mat 2023, 56, 189-211.

ABNT

PRINS, A. L. On the Fischer matrices of a group of shape 21+2n + :G. Revista Colombiana de Matemáticas, [S. l.], v. 56, n. 2, p. 189–211, 2023. DOI: 10.15446/recolma.v56n2.108379. Disponível em: https://revistas.unal.edu.co/index.php/recolma/article/view/108379. Acesso em: 23 sep. 2023.

Chicago

Prins, Abraham Love. 2023. «On the Fischer matrices of a group of shape 21+2n + :G». Revista Colombiana De Matemáticas 56 (2):189-211. https://doi.org/10.15446/recolma.v56n2.108379.

Harvard

Prins, A. L. (2023) «On the Fischer matrices of a group of shape 21+2n + :G», Revista Colombiana de Matemáticas, 56(2), pp. 189–211. doi: 10.15446/recolma.v56n2.108379.

IEEE

[1]
A. L. Prins, «On the Fischer matrices of a group of shape 21+2n + :G», rev.colomb.mat, vol. 56, n.º 2, pp. 189–211, abr. 2023.

MLA

Prins, A. L. «On the Fischer matrices of a group of shape 21+2n + :G». Revista Colombiana de Matemáticas, vol. 56, n.º 2, abril de 2023, pp. 189-11, doi:10.15446/recolma.v56n2.108379.

Turabian

Prins, Abraham Love. «On the Fischer matrices of a group of shape 21+2n + :G». Revista Colombiana de Matemáticas 56, no. 2 (abril 17, 2023): 189–211. Accedido septiembre 23, 2023. https://revistas.unal.edu.co/index.php/recolma/article/view/108379.

Vancouver

1.
Prins AL. On the Fischer matrices of a group of shape 21+2n + :G. rev.colomb.mat [Internet]. 17 de abril de 2023 [citado 23 de septiembre de 2023];56(2):189-211. Disponible en: https://revistas.unal.edu.co/index.php/recolma/article/view/108379

Descargar cita

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX