Publicado
Sections of the light cone in Minkowski 4-space
Secciones del cono de luz en el espacio de Minkowski 4-dimensional
DOI:
https://doi.org/10.15446/recolma.v57n1.112371Palabras clave:
Minkowski 4-space, light cone, conic sections, hyperquadrics (en)Espacio de Minkowski 4-dimensional, cono de luz, secciones cónicas, hipercuádricas (es)
Descargas
The intersection of an affine hyperplane in L4 with the light cone C is called a conic section. In this paper, it is proved that the conic sections in L4 are either Riemannian spheres, hyperbolic spaces or horospheres, depending on the causal character of the hyperplane. Analogous results for affine sections of de Sitter and hyperbolic spaces in L4 are also presented at the end.
La intersección de un hiperplano afín en L4 con el cono de luz C se llama una sección cónica. En este artículo, probamos que las secciones cónicas de L4 son esferas de Riemann, espacios hiperbólicos o horoesferas, dependiendo del carácter causal del hiperplano. Al final del artículo presentamos resultados similares para secciones afines de espacios de Sitter y espacios hiperbólicos de L4.
Referencias
S. Klainerman, J. Luk, and I. Rodnianski, A fully anisotropic mechanism for formation of trapped surfaces in vacuum, Invent. Math 198 (2014), no. 1, 1-26. DOI: https://doi.org/10.1007/s00222-013-0496-6
R. López, Differential geometry of curves and surfaces in Lorentz-Minkowski spaces, Int. Electron. J. Geometry 7 (2014), no. 1, 44-107. DOI: https://doi.org/10.36890/iejg.594497
B. O'Neill, Semi-Riemannian Geometry with Applications to Relativity, Academic Press Inc., New York, 1983.
Le. P., The intersection of a hyperplane with a lightcone in the Minkowski spacetime, J. Differential Geometry 109 (2018), 497-507. DOI: https://doi.org/10.4310/jdg/1531188194
J. G. Ratcliffe, Foundations of hyperbolic manifolds, Graduate Texts in Mathematics 149, Springer, New York, 2006.
S. Sasaki, On complete flat surfaces in hyperbolic 3-space, Kodai Math. Sem. Rep. 25 (1973), 449-457. DOI: https://doi.org/10.2996/kmj/1138846871
Weinstein T., An introduction to Lorentz surfaces, de Gruyter Expositions in Mathematics, vol. 22, Walter de Gruyter & Co., Berlin, 1996.
