Publicado

2024-01-11

Periodic orbits in a seasonal SIRS model with both incidence and treatment generalized rates

Órbitas periódicas en un modelo SIRS estacional con tasas generalizadas de incidencia y tratamiento

DOI:

https://doi.org/10.15446/recolma.v57n1.112372

Palabras clave:

Leray-Schauder degree, SIRS models, periodic orbits, basic reproduction number (en)
Grado Leray-Schauder, modelos SIRS, órbitas periódicas, número de reproducción básico (es)

Descargas

Autores/as

  • Shaday Guerrero-Flores Universidad Nacional Autónoma de México
  • Osvaldo Osuna Universidad Michoacana
  • José Geiser Villavicencio Pulido Universidad Autónoma Metropolitana

In this work, we prove that a seasonal-dependent SIRS model with general incidence and treatment rates has periodic solutions. This generalized model is analyzed using Leray-Schauder degree theory to prove the existence of a periodic solution. Finally, numerical simulations are shown to illustrate the theoretical results.

En este trabajo, nosotros probamos que un modelo SIRS estacional denso-dependiente con tasas generalizadas de incidencia y tratamiento tiene soluciones periódicas. Este modelo generalizado es analizado usando teoría de grado de Leray-Schauder para probar la existencia de órbitas periódicas. Finalmente, se muestran simulaciones numéricas para ilustrar los resultados teóricos.

Referencias

R.M Anderson and R.M May, Infectious diseases of humans: dynamics and control, Oxford University Press, Oxford, 1991. DOI: https://doi.org/10.1093/oso/9780198545996.001.0001

Z. Bai and Y. Zhou, Existence of two periodic solutions for a non-autonomous sir epidemic model, Appl. Math. Model 35 (2011), 382-391. DOI: https://doi.org/10.1016/j.apm.2010.07.002

R. Brown, A topological introduction to nonlinear analysis, Birkhauser second edition, Boston, 2013.

V. Capasso and G. Serio, A generalisation of the kermack-mckendrick deterministic epidemic model, Math. Biosci. 42 (1978), 43-61. DOI: https://doi.org/10.1016/0025-5564(78)90006-8

A. Cervantes-Pérez and E. Avila-Vales, Global stability for sirs epidemic models with general incidence rate and transfer from infectious to susceptible, Bol. Soc. Mat. Mex. (2018), 1-22.

J. Cui, Y. Sun, and H. Zhu, The impact of media on the control of infectious diseases, J. Dyn. Differ. 20 (2008), no. 1, 31-53. DOI: https://doi.org/10.1007/s10884-007-9075-0

W. Cui and X. Mu, Saturation recovery leads to multiple endemic equilibria and backward bifurcation, J. Theor. Biol. 254 (2008), 275-283. DOI: https://doi.org/10.1016/j.jtbi.2008.05.015

A. Dénes and G. Róst, Global stability for sir and sirs models with nonlinear incidence and removal terms via dulac functions, Discrete and Cont. Dyn. Syst. serie B 21 (2016), no. 4, 1101-1117. DOI: https://doi.org/10.3934/dcdsb.2016.21.1101

J. Dushoff, J. B. Plotkin, S.A. Levin, and D. J. D Earn, Dynamical resonance can account for seasonality of influenza epidemics, Proc. Natl Acad. Sci. USA (USA), PNAS, 2004, pp. 16915-16916. DOI: https://doi.org/10.1073/pnas.0407293101

X. Ghosh and X. W. Li, Stability and bifurcation of an epidemic model with nonlinear incidence and treatment, Applied Mathematics and Computation 210 (2009), 141-150. DOI: https://doi.org/10.1016/j.amc.2008.12.085

L. R. González, O. Osuna, and G. Villavicencio, Oscillations in seasonal sir epidemic models with saturated treatment, Revista Integración 34 (2016), no. 2, 125-131. DOI: https://doi.org/10.18273/revint.v34n2-2016001

N. C. Grassly and C. Fraser, Seasonal infectious disease epidemiology, Proc. R. Soc. B 273 (2006), 2541-2550. DOI: https://doi.org/10.1098/rspb.2006.3604

S. Guerrero-Flores, O. Osuna, and C. Vargas de León, Periodic solutions for seasonal siqrs models with non linear infection terms, Electronic Journal of Differential Equations 2019 (2019), no. 92, 1-13.

H. Hethcote, M. Zhien, and L. Shengbing, Effects of quarantine in six endemic models for infectious diseases, Math. Biosci. 180 (2002), 141-160. DOI: https://doi.org/10.1016/S0025-5564(02)00111-6

L. Jódar, J. R. Villanueva, and A. Arenas, Modeling the spread of seasonal epidemiological diseases: Theory and applications, Math. and Comp. Modelling 48 (2008), 548-557. DOI: https://doi.org/10.1016/j.mcm.2007.08.017

T. Kar and A. Batabyal, Modeling and analysis of an epidemic model with non-monotonic incidence rate under treatment, J. of Math. Research 2 (2010), no. 1, 103-115. DOI: https://doi.org/10.5539/jmr.v2n1p103

G. Katriel, Existence of periodic solutions for periodically forced sir model, J. Math. Sc. 201 (2014), no. 3, 335-342. DOI: https://doi.org/10.1007/s10958-014-1993-x

Z. Liu L.Wang, X. Zhang, An seir epidemic model with relapse and general non-linear incidence rate with application to media, Qual. Th. Dyn. Syst. (2017), 1-21.

L. Li, Y. Bai, and Z. Jin, Periodic solutions of an epidemic model with saturated treatment, Nonlinear Dynam. 76 (2014), 1099-1108. DOI: https://doi.org/10.1007/s11071-013-1193-0

W. Liu, H. Hethcote, and S. Levin, Dynamical behaviour of epidemiological models with nonlinear incidence rates, J. Math. Biol. 25 (1987), 359-380. DOI: https://doi.org/10.1007/BF00277162

W. Liu, S. Levin, and Y. Iwasa, Influence of nonlinear incidence rates upon the behaviour of sirs epidemiological models, J. Math. Biol. 23 (1986), 187-204. DOI: https://doi.org/10.1007/BF00276956

O. Osuna and J. G. Villavicencio-Pulido, Seasonal treatment of an infectious disease is a social driver of sustained oscillations in the disease incidence, Trends in Computational and Applied Mathematics 22 (2021), no. 2, 279-289. DOI: https://doi.org/10.5540/tcam.2021.022.02.00279

L. Song and W. Du, Different types of backward bifurcation due to density-dependent treatments, Mathematical Biosciences and Engineering 10 (2013), no. 5-6, 1651-1668. DOI: https://doi.org/10.3934/mbe.2013.10.1651

P. van den Driessche and J. Watmough, A simple sis epidemic model with a backward bifurcation, J. Math. Biol. 40 (2000), 525-540. DOI: https://doi.org/10.1007/s002850000032

P. van den Driessche and James Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Mathematical Biosciences 180 (2002), 29-48. DOI: https://doi.org/10.1016/S0025-5564(02)00108-6

H. Wang and S. Liu, Backward bifurcation of an epidemic model with standard incidence rate and treatment rate, Nonlinear Analysis 9 (2008), 2302-2312. DOI: https://doi.org/10.1016/j.nonrwa.2007.08.009

W. Wang, Backward bifurcation of an epidemic model with treatment, Math. Biosci 201 (2006), 58-71. DOI: https://doi.org/10.1016/j.mbs.2005.12.022

D. G. Williams and C. Dye, Infectious disease persistence when transmission varies seasonally, Mathematical Biosciences 145 (2012), 77-88. DOI: https://doi.org/10.1016/S0025-5564(97)00039-4

D. Xiao and S. Ruan, Global analysis of an epidemic model with non monotone incidence rate, Math. Biosci. 208 (2007), 419-429. DOI: https://doi.org/10.1016/j.mbs.2006.09.025

X. Zhang and X. Liu, Backward bifurcation of an epidemic model with saturated treatment function, J. Math. Anal. Appl. 348 (2008), 433-443. DOI: https://doi.org/10.1016/j.jmaa.2008.07.042

Y. Zheng, J. Takeuchi, and S. Liu, Qualitative and bifurcation analysis using an sir model with a saturated treatment function, Mathematical and Computer Modelling 55 (2012), 710-720. DOI: https://doi.org/10.1016/j.mcm.2011.08.045

Cómo citar

APA

Guerrero-Flores, S., Osuna, O. y Villavicencio Pulido, J. G. (2024). Periodic orbits in a seasonal SIRS model with both incidence and treatment generalized rates. Revista Colombiana de Matemáticas, 57(1), 19–36. https://doi.org/10.15446/recolma.v57n1.112372

ACM

[1]
Guerrero-Flores, S., Osuna, O. y Villavicencio Pulido, J.G. 2024. Periodic orbits in a seasonal SIRS model with both incidence and treatment generalized rates. Revista Colombiana de Matemáticas. 57, 1 (ene. 2024), 19–36. DOI:https://doi.org/10.15446/recolma.v57n1.112372.

ACS

(1)
Guerrero-Flores, S.; Osuna, O.; Villavicencio Pulido, J. G. Periodic orbits in a seasonal SIRS model with both incidence and treatment generalized rates. rev.colomb.mat 2024, 57, 19-36.

ABNT

GUERRERO-FLORES, S.; OSUNA, O.; VILLAVICENCIO PULIDO, J. G. Periodic orbits in a seasonal SIRS model with both incidence and treatment generalized rates. Revista Colombiana de Matemáticas, [S. l.], v. 57, n. 1, p. 19–36, 2024. DOI: 10.15446/recolma.v57n1.112372. Disponível em: https://revistas.unal.edu.co/index.php/recolma/article/view/112372. Acesso em: 5 ago. 2024.

Chicago

Guerrero-Flores, Shaday, Osvaldo Osuna, y José Geiser Villavicencio Pulido. 2024. «Periodic orbits in a seasonal SIRS model with both incidence and treatment generalized rates». Revista Colombiana De Matemáticas 57 (1):19-36. https://doi.org/10.15446/recolma.v57n1.112372.

Harvard

Guerrero-Flores, S., Osuna, O. y Villavicencio Pulido, J. G. (2024) «Periodic orbits in a seasonal SIRS model with both incidence and treatment generalized rates», Revista Colombiana de Matemáticas, 57(1), pp. 19–36. doi: 10.15446/recolma.v57n1.112372.

IEEE

[1]
S. Guerrero-Flores, O. Osuna, y J. G. Villavicencio Pulido, «Periodic orbits in a seasonal SIRS model with both incidence and treatment generalized rates», rev.colomb.mat, vol. 57, n.º 1, pp. 19–36, ene. 2024.

MLA

Guerrero-Flores, S., O. Osuna, y J. G. Villavicencio Pulido. «Periodic orbits in a seasonal SIRS model with both incidence and treatment generalized rates». Revista Colombiana de Matemáticas, vol. 57, n.º 1, enero de 2024, pp. 19-36, doi:10.15446/recolma.v57n1.112372.

Turabian

Guerrero-Flores, Shaday, Osvaldo Osuna, y José Geiser Villavicencio Pulido. «Periodic orbits in a seasonal SIRS model with both incidence and treatment generalized rates». Revista Colombiana de Matemáticas 57, no. 1 (enero 11, 2024): 19–36. Accedido agosto 5, 2024. https://revistas.unal.edu.co/index.php/recolma/article/view/112372.

Vancouver

1.
Guerrero-Flores S, Osuna O, Villavicencio Pulido JG. Periodic orbits in a seasonal SIRS model with both incidence and treatment generalized rates. rev.colomb.mat [Internet]. 11 de enero de 2024 [citado 5 de agosto de 2024];57(1):19-36. Disponible en: https://revistas.unal.edu.co/index.php/recolma/article/view/112372

Descargar cita

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Visitas a la página del resumen del artículo

60

Descargas

Los datos de descargas todavía no están disponibles.