Publicado
On the some equations inequalities in Musielak-Orlicz spaces with measure data
Desigualdades de ecuaciones sobre espacios Musielak-Orlicz con condiciones iniciales medibles
DOI:
https://doi.org/10.15446/recolma.v57n1.112431Palabras clave:
Musielak-Orlicz-Sobolev spaces, Unilateral parabolic problem, entropy solutions, truncations (en)Espacios de Musielak-Orlicz-Sobolev, problemas parabólicos unilaterales, soluciones de entropía (es)
Descargas
Our aim in this present work is to prove the existence of a solution for the nonlinear unilateral parabolic problems associated to the equation
∂u - div a(x, t, u, ∇u) - div Φ(x, t, u) = μ in QT = Ω × (0, T), ∂twhere the lower order term Φ satisfies a generalized natural growth condition and the datum μ belongs to L1(Q) + E (Q).
El objetivo de este trabajo es probar la existencia de soluciones para problemas parabólicos unilaterales asociados a la ecuación
∂u - div a(x, t, u, ∇u) - div Φ(x, t, u) = μ in QT = Ω × (0, T), ∂tdonde el término Φ satisface una condición natural generalizada de crecimiento y la condición μ pertenece al espacio L1(Q) + E (Q).
Referencias
M. Kbiri Alaoui, D. Meskine, and A. Souissi, On some class of nonlinear parabolic inequalities in Orlicz spaces, Nonlinear Anal. TMA 74 (2011), no. 17, 5863-5875. DOI: https://doi.org/10.1016/j.na.2011.04.048
N. El Amarty, B. El Haji, and M. El Moumni, Existence of renomalized solution for nonlinear Elliptic boundary value problem without 2-condition, SeMA 77 (2020), 389-414, https://doi.org/10.1007/s40324-020-00224-z. DOI: https://doi.org/10.1007/s40324-020-00224-z
N. El Amarty, B. El Haji, and M. El Moumni, Entropy solutions for unilateral parabolic problems with L1-data in Musielak-Orlicz-Sobolev spaces, Palestine Journal of Mathematics 11 (2022), no. 1, 504-523.
O. Azraibi, B. EL haji, and M. Mekkour, Nonlinear parabolic problem with lower order terms in Musielak-Sobolev spaces without sign condition and with Measure data, Palestine Journal of Mathematics 11 (2022), no. 3, 474-503.
O. Azraibi, B. EL haji, and M. Mekkour, On Some Nonlinear Elliptic Problems with Large Monotonocity in MusielakâOrliczâSobolev Spaces, Journal of Mathematical Physics, Analysis, Geometry 18 (2022), no. 3, 1â18. DOI: https://doi.org/10.15407/mag18.03.332
O. Azraibi, B. El Haji, and M. Mekkour, Entropy Solution for Nonlinear Elliptic Boundary Value Problem Having Large Monotonocity in Musielak-Orlicz-Sobolev Spaces, Asia Pac. J. Math. 10 (2023), no. 7, 104-116, DOI:doi:10.28924/APJM/10-7. DOI: https://doi.org/10.28924/APJM/10-7
O. Azraibi, B. EL Haji, and M. Mekkour, Strongly nonlinear unilateral anisotropic elliptic problem with-data, Asia Mathematika 7 (2023), no. 1, 1-20, DOI: doi.org/10.5281/zenodo.8071010.
E. Azroul, M. El Lekhlifi, H. Redwane, and A. Touzani, Entropy solutions of nonlinear parabolic equations in Orlicz-Sobolev spaces, without sign condition and L1 data, J. Nonlinear Evol. Equ. Appl. (2014), 101-130.
E. Azroul, H. Redwane, and C. Yazough, Strongly Nonlinear Nonhomogeneous Elliptic Unilateral Problems with L1 data and no sign conditions, Electronic Journal of Differential Equations 79 (2012), 1-20.
P. Benilan, L. Boocardo, T. Gallouet, R. Gariepy, M. Pierre, and J. Vazquez, An L1-theory of existence and uniqueness of solutions of nonlinear elliptic equations, Ann. Scuola Norm. Super. Pisa 22 (1995), 241-273.
A. Benkirane, N. El Amarty, B. El Haji, and M. El Moumni, Existence of solutions for a class of nonlinear elliptic problems with measure data in the setting of MusielakâOrliczâSobolev spaces, J Elliptic Parabol Equ. 9 (2023), 647â672, https://doi.org/10.1007/s41808-022-00193-6. DOI: https://doi.org/10.1007/s41808-022-00193-6
A. Benkirane, B. El Haji, and M. El Moumni, Strongly nonlinear elliptic problem with measure data in Musielak-Orlicz spaces, Complex Variables and Elliptic Equations 67, no. 6, 1447-1469, https://doi.org/10.1080/17476933.2021.1882434. DOI: https://doi.org/10.1080/17476933.2021.1882434
A. Benkirane, B. El Haji, and M. El Moumni, On the existence of solution for degenerate parabolic equations with singular terms, Pure and Applied Mathematics Quarterly 14 (2018), no. 3-4, 591-606. DOI: https://doi.org/10.4310/PAMQ.2018.v14.n3.a8
A. Benkirane, B. El Haji, and M. El Moumni, On the Existence Solutions for some Nonlinear Elliptic Problem, Bol. Soc. Paran. Mat. (3s.) 40 (2022), 1-8, DOI:10.5269/bspm.53111. DOI: https://doi.org/10.5269/bspm.53111
A. Benkirane and M. Sidi El Vally, Some approximation properties in Musielak-Orlicz-Sobolev spaces, Thai.J. Math. 10 (2012), 371-381.
A. Benkirane and M. Sidi El Vally, Variational inequalities in Musielak-Orlicz-Sobolev spaces, Bull. Belg. Math. Soc. Simon Stevin 21 (2014), 787-811. DOI: https://doi.org/10.36045/bbms/1420071854
R. Elarabi, M. Rhoudaf, and H. Sabiki, Entropy solution for a nonlinear elliptic problem with lower order term in Musielak-Orlicz spaces, Ric. Mat., 2017, https://doi.org/10.1007/s11587-017-0334-z. DOI: https://doi.org/10.1007/s11587-017-0334-z
A. Elmahi and D. Meskine, Strongly nonlinear parabolic equations with natural growth terms and L1 data in Orlicz spaces, Port. Math. (N.S.) 62 (2005), no. 2, 143-183. DOI: https://doi.org/10.1007/s10231-004-0107-7
J. P. Gossez and V. Mustonen, Variationnal inequalities in Orlicz-Sobolev spaces, Nonlinear Anal. 11 (1987), 317-492. DOI: https://doi.org/10.1016/0362-546X(87)90053-8
N. S. Hadj, H. Moussa, and M. Rhoudaf, Renormalized solution for a nonlinear parabolic problems with noncoercivity in divergence form in Orlicz spaces, Appl. Math. Comput. 249 (2014), 253-264.
B. El Haji and M. El Moumni, Entropy solutions of nonlinear elliptic equations with L1-data and without strict monotonocity conditions in weighted Orlicz-Sobolev spaces, Journal of Nonlinear Functional Analysis 2021 (2021), 1-17, Article ID 8. DOI: https://doi.org/10.23952/jnfa.2021.8
B. El Haji, M. El Moumni, and K. Kouhaila, On a nonlinear elliptic problems having large monotonocity with L1-data in weighted Orlicz-Sobolev spaces, Moroccan J. of Pure and Appl. Anal. (MJPAA) 5 (2019), no. 1, 104-116, DOI 10.2478/mjpaa-2019-0008. DOI: https://doi.org/10.2478/mjpaa-2019-0008
B. El Haji, M. El Moumni, and K. Kouhaila, Existence of entropy solutions for nonlinear elliptic problem having large monotonicity in weighted Orlicz-Sobolev spaces, LE MATEMATICHE LXXVI (2021), no. I, 37-61, https://doi.org/10.4418/2021.76.1.3.
B. El Haji, M. El Moumni, and A. Talha, Entropy solutions for nonlinear parabolic equations in Musielak Orlicz spaces without Delta2-conditions, Gulf Journal of Mathematics 9 (2020), no. 1, 1-26.
B. El Haji, M. El Moumni, and A. Talha, Entropy Solutions of Nonlinear Parabolic Equations in Musielak Framework Without Sign Condition and L1-Data, Asian Journal of Mathematics and Applications, 2021, 33 pp. DOI: https://doi.org/10.56947/gjom.v9i1.448
E. Hewitt and K. Stromberg, Real and Abstract Analysis, Springer, Berlin, 1965. DOI: https://doi.org/10.1007/978-3-642-88044-5
M. Ait Khellou and A. Benkirane, Elliptic inequalities with L1 data in Musielak-Orlicz spaces, Monatsh Math. 183 (2017), 1-33. DOI: https://doi.org/10.1007/s00605-016-1010-1
M. Ait Khellou, A. Benkirane, and S. M. Douiri, Some properties of Musielak spaces with only the log-Hölder continuity condition and application, Annals of Functional Analysis,Tusi Mathematical Research Group (TMRG), 2020, DOI: 10.1007/s43034-020-00069-7. DOI: https://doi.org/10.1007/s43034-020-00069-7
R. Landes and V. Mustonen, A strongly nonlinear parabolic initialboundary value problem, Ask. Mat. 25 (1987), 29-40. DOI: https://doi.org/10.1007/BF02384435
M. Mabdaoui, H. Moussa, and M. Rhoudaf, Entropy solutions for a nonlinear parabolic problems with lower order term in Orlicz spaces, Anal.Math.Phys. (2016), DOI 10.1007/s13324-016-0129-5. DOI: https://doi.org/10.1007/s13324-016-0129-5
D. Meskine, Parabolic equations with measure data in Orlicz spaces, J. Evol. Equ. 5 (2005), 529-543. DOI: https://doi.org/10.1007/s00028-005-0217-8
H. Moussa and M. Rhoudaf, Renormalized solution for a nonlinear parabolic problems with noncoersivity in divergence form in Orlicz Spaces, Appled Mathematics and Computation 249 (2014), 253-264. DOI: https://doi.org/10.1016/j.amc.2014.10.026
J. Musielak, Modular spaces and Orlicz spaces, Lecture Notes in Math. 1034 (1983), iii+222 pp. DOI: https://doi.org/10.1007/BFb0072210
M. L. Ahmed Oubeid, A. Benkirane, and M. Sidi El Vally, Strongly nonlinear parabolic problems in Musielak-Orlicz-Sobolev spaces, Bol. Soc. Paran. Mat. 33 (2015), no. 1, 191-230. DOI: https://doi.org/10.5269/bspm.v33i1.23083
A. Porretta, Existence and uniqueness of entropy solutions of parabolic problems with L1 - data, Non-linear Anal. 528 (1997), 1943-1954. DOI: https://doi.org/10.1016/S0362-546X(96)00030-2
A. Porretta, Existence results for strongly nonlinear parabolic equations via strong convergence of truncations, Ann. Mat. Pura Appl. 177 (1999), no. IV, 143-172. DOI: https://doi.org/10.1007/BF02505907
H. Redwane, Existence Results For a Class of Nonlinear Parabolic Equations in Orlicz Spaces, Electronic Journal of Qualitative Theory of Differential Equations 2 (2010), 19pp. DOI: https://doi.org/10.14232/ejqtde.2010.1.2
W. Rudin, Real and Complex Analysis, 3rd ed., McGraw-Hill, New York, 1974.
H. Sabiki, M. Rhoudaf, and R. Elarabi, Existence results for a non-linear obstacle parabolic semicoercive problems with lower order term, COMP. VAR. ELL. EQU., 2018, https://doi.org/10.1080/17476933.2018.1427077. DOI: https://doi.org/10.1080/17476933.2018.1427077
J. Simon, Compact sets in Lp(0; T;B), Ann. Mat. Pura Appl. 146 (1987), 65-96. DOI: https://doi.org/10.1007/BF01762360
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
CrossRef Cited-by
1. Arij Bouzelmate, Badr El Haji, Adnan Lamtarah. (2024). Nonlinear elliptic unilateral problems with measure data in the anisotropic Sobolev space. Nonautonomous Dynamical Systems, 11(1) https://doi.org/10.1515/msds-2024-0001.