Publicado
The Plykin and Solenoid attractor are homoclinic classes
Los atractores Plykin y Solenoide son clases homoclínicas
DOI:
https://doi.org/10.15446/recolma.v57nSupl.112450Palabras clave:
Attractor, hyperbolic attractors, homoclinic classes, periodic orbits (en)Atractores, atractores hiperbólicos, clases homoclínicas, órbita periódica (es)
Descargas
A homoclinic class is the closure of the transverse intersection points of the stable and unstable manifolds of a hyperbolic periodic orbit. In this paper, we prove, using the techniques presented in [1], that the Plykin and the Solenoid attractors are a homoclinic class.
Una clase homoclínica es la clausura de puntos de intersecciones transversales entre las variedades estables e inestables sobre una órbita periódica hiperbólica. En este trabajo, usamos la técnica presentada en [1], para probar que los atractores Plykin y Solenoide son clases homoclínicas
Referencias
S. Bautista, The geometric lorenz attractor is a homoclinic class, Boletín de Matemáticas XI (2004), no. 1, 68-78.
M. Lee, Measure-expansive homoclinic class for c1 generic flows, Mathematics 8 (2020), pp 1232. DOI: https://doi.org/10.3390/math8081232
A. M. López and A. E. Arbieto, Finiteness of homoclinic classes on sectional hyperbolic sets, arXiv preprint arXiv:1908.04424, 2019.
V. Mayer, B. Skorulski, and M. Urbanski, Distance expanding random mappings, thermodynamic formalism, Gibbs measures and fractal geometry, Lecture notes in mathematics. 2036, 2011, Springer-Verlag. DOI: https://doi.org/10.1007/978-3-642-23650-1
S. Michael, Global stability of dynamical systems, Springer-Verlag, 1987.
K. Oliveira and M. Viana, Fundamentos de teoria ergódica, SBM,Coleccao Fronteiras da Matemática, 2014.
W. Robert, Expanding attractors, Publications Mathématiques de l'I.H.É.S 43 (1974), no. 6, 169-203. DOI: https://doi.org/10.1007/BF02684369
C. Robinson, Dynamical systems - stability, symbolic dynamics and chaos, Stud. Adv. Math. CRC Press, Boca Raton, FL, 1999, xiv+506 pp., 1999.
S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc 73 (1967), 747-817. DOI: https://doi.org/10.1090/S0002-9904-1967-11798-1
D. Yang and S. Gan, Expansive homoclinic classes, Nonlinearity 22 (2009), 729-733. DOI: https://doi.org/10.1088/0951-7715/22/4/002
