Publicado
Quasiconvex functions on regular trees
Funciones cuasi-convexas en arboles regulares
DOI:
https://doi.org/10.15446/recolma.v58n1.117431Palabras clave:
quasiconvexity, envelope, trees (en)cuasiconvexidad, envolventes, árboles (es)
Descargas
We introduce a definition of a quasiconvex function on an infinite directed regular tree that depends on what we understand by a segment on the tree. Our definition is based on thinking on segments as subtrees with the root as the midpoint of the segment and extends a previous notion of convexity on a tree. A convex set in the tree is then a subset such that it contains every midpoint of every segment with terminal nodes in the set. Then, a quasiconvex function is a real map on the tree such that every level set is a convex set. For this concept of quasiconvex functions on a tree, we show that given a continuous boundary datum, there exists a unique quasiconvex envelope on the tree, and we characterize the equation that this envelope satisfies. It turns out that this equation is a mean value property that involves a median among values of the function on successors of a given vertex. We also relate the quasiconvex envelope of a function defined inside the tree to the solution of an obstacle problem for this characteristic equation.
Se introduce una definición de función cuasiconvexa en el árbol regular dirigido e infinito, que depende de lo que se entienda por segmento en el árbol. Nuestra definición se basa en pensar segmentos como subárboles con la raíz como el punto medio del segmento, lo que extiende una noción previa de convexidad en un árbol. Un conjunto convexo en el árbol es entonces un subconjunto tal que contiene cada punto medio de cada segmento con nodos terminales en el conjunto. Entonces, una función cuasiconvexa es una función real en el árbol tal que cada conjunto de nivel es convexo. Para este concepto de funciones cuasiconvexas en un árbol, se muestra que dado un dato de borde continuo, existe una única envolvente cuasiconvexa en el árbol, y se caracteriza la ecuación que satisface esta envolvente. La ecuación resultante es una propiedad de valor medio que involucra una mediana entre los valores de la función en los sucesores de un vértice dado. También se relaciona la envolvente cuasiconvexa de una función definida dentro del árbol con la solución de un problema de obstáculo para esta ecuación característica.
Referencias
[1] R. B. Bapat, D. Kalita, M. Nath, and D. Sarma, Convex and quasiconvex functions on trees and their applications, Linear Algebra Appl. 533 (2017), 210-234 (English).
[2] E. N. Barron, R. Goebel, and R. R. Jensen, Functions which are quasiconvex under linear perturbations, SIAM J. Optim. 22 (2012), no. 3, 1089-1108 (English).
[3] E. N. Barron, R. Goebel, and R. R. Jensen, The quasiconvex envelope through first-order partial differential equations which characterize quasiconvexity of nonsmooth functions, Discrete Contin. Dyn. Syst., Ser. B 17 (2012), no. 6, 1693-1706 (English).
[4] E. N. Barron, R. Goebel, and R. R. Jensen, Quasiconvex functions and nonlinear PDEs, Trans. Am. Math. Soc. 365 (2013), no. 8, 4229-4255 (English).
[5] P. Blanc and J. D. Rossi, Games for eigenvalues of the Hessian and concave/convex envelopes, J. Math. Pures Appl. (9) 127 (2019), 192-215 (English).
[6] J. C´aceres, A. M´arquez, and M. L. Puertas, Steiner distance and convexity in graphs, Eur. J. Comb. 29 (2008), no. 3, 726-736 (English).
[7] L. M. Del Pezzo, N. Frevenza, and J. D. Rossi, Convex envelopes on trees, J. Convex Anal. 27 (2020), no. 4, 1195-1218 (English).
[8] L. M. Del Pezzo, C. A. Mosquera, and J. D. Rossi, Estimates for nonlinear harmonic measures on trees, Bull. Braz. Math. Soc. (N.S.) 45 (2014), no. 3, 405-432 (English).
[9] L. M. Del Pezzo, C. A. Mosquera, and J. D. Rossi, The unique continuation property for a nonlinear equation on trees, J. Lond. Math. Soc., II. Ser. 89 (2014), no. 2, 364-382 (English).
[10] A. Eberhard and C. E. M. Pearce, Class-inclusion properties for convex functions, Progress in optimization. Contributions from Australasia. Papers of the 5th optimization days (OD) mini-conference, Univ. of Western Australia, Perth, Australia, June 29–30, 1998, Dordrecht: Kluwer Academic Publishers, 2000, pp. 129-133 (English).
[11] M. Farber and R. E. Jamison, Convexity in graphs and hypergraphs, SIAM J. Algebraic Discrete Methods 7 (1986), 433-444 (English).
[12] M. Farber and R. E. Jamison, On local convexity in graphs, Discrete Math. 66 (1987), 231-247 (English).
[13] P. Favati and F. Tardella, Convexity in nonlinear integer programming, Ricerca Operativa 53 (1990), 3-44.
[14] C. A. Floudas and P. M. Pardalos (eds.), Frontiers in global optimization, Nonconvex Optim. Appl., vol. 74, Boston, MA: Kluwer Academic Publishers, 2004 (English).
[15] R. Kaufman, J. G. Llorente, and J.-M. Wu, Nonlinear harmonic measures on trees, Ann. Acad. Sci. Fenn., Math. 28 (2003), no. 2, 279-302 (English).
[16] H. Komiya, Elementary proof for Sion’s minimax theorem, Kodai Math. J. 11 (1988), no. 1, 5-7 (English).
[17] J. J. Manfredi, A. M. Oberman, and A. P. Sviridov, Nonlinear elliptic partial differential equations and p-harmonic functions on graphs., Differ. Integral Equ. 28 (2015), no. 1-2, 79-102 (English).
[18] K. Murota, Discrete convex analysis, Math. Program. 83 (1998), no. 3 (A), 313-371 (English).
[19] K. Murota, Discrete convex analysis, SIAM Monogr. Discrete Math. Appl., vol. 10, Philadelphia, PA: SIAM Society for Industrial and Applied Mathematics, 2003 (English).
[20] K. Murota, Recent developments in discrete convex analysis, Research trends in combinatorial optimization. Papers based on the presentations at the workshop Bonn, Germany, 2008. Dedicated to Bernard Korte on the occasion of the 70th birthday., Berlin: Springer, 2009, pp. 219-260 (English).
[21] A. M. Oberman, The convex envelope is the solution of a nonlinear obstacle problem, Proc. Am. Math. Soc. 135 (2007), no. 6, 1689-1694 (English).
[22] A. M. Oberman and L. Silvestre, The Dirichlet problem for the convex envelope, Trans. Am. Math. Soc. 363 (2011), no. 11, 5871-5886 (English).
[23] I. M. Pelayo, Geodesic convexity in graphs, SpringerBriefs Math., New York, NY: Springer, 2013 (English).
[24] M. Sion, On general minimax theorems, Pac. J. Math. 8 (1958), 171-176 (English).
[25] A. P. Sviridov, p-harmonious functions with drift on graphs via games, Electron. J. Differential Equations (2011), No. 114, 11. MR 2836795
[26] M. L. J. van de Vel, Theory of convex structures, North-Holland Math. Libr., vol. 50, Amsterdam: North-Holland, 1993 (English).