Publicado

2024-11-05

On k-Pell numbers close to power of 2

Números de k-Pell cercanos a potencias de 2

DOI:

https://doi.org/10.15446/recolma.v58n1.117434

Palabras clave:

Diophantine equations, k-Pell numbers, linear forms in logarithms, reduction method (en)
Ecuaciones Diofantina, números k-Pell, formas lineales en logaritmos, metodo de reducción (es)

Descargas

Autores/as

  • Mohamadou Bachabi Université d'Abomey-Calavi (UAC)
  • Alain Togbe Purdue University Northwest

For k ≥ 2, let (P(k)n)n≥2−k be the k-generalized Pell sequence which starts with 0, · · · , 0, 1 (k terms) and each term afterwards is given by the linear recurrence
P(k)n = 2P(k)n-1 + P(k)n-2 + · · · + P(k)n-k, for all n ≥ 2.
An integer n is said to be close to a positive integer m if n satisfies |n−m| < √m. In this paper, we solve the Diophantine inequality
|P(k) − 2m| < 2m/2,
in positive unknowns k, n, and m.

Para k ≥ 2, sea (P(k)n)n≥2−k  la k-sucesión generalizada de Pell que comienza en los valores 0, · · · , 0, 1 (k términos en total) y que satisface la relación de recurrencia
P(k)n = 2P(k)n-1 + P(k)n-2 + · · · + P(k)n-k, para todo n ≥ 2.
Un entero n se denomina cercano a otro entero m si n satisface |n−m| < √m. En este artículo se resuelve la desigualdad Diofantina
|P(k) − 2m| < 2m/2,
para las indeterminadas enteras k, n, y m

Referencias

[1] A. A¸cikel, N. Irmak, and L. Szalay, The k-generalized Lucas numbers close to a power of 2, To appear in Mathematica Slovaca.

[2] A. Baker and H. Davenport, The equations 3x2−2 = y2 and 8x2−7 = z2, Quart.J of Math. Ser. 20 (1969), no. 2, 129-137.

[3] J. J. Bravo, C. A. Gómez, and J. L. Herrera, k-fibonacci numbers close to a power of 2, Quaest. Math. 44 (2021), no. 12, 1681-1690.

[4] J. J. Bravo, C. A. Gómez, and F. Luca, Power of two as sums of two k-Fibonacci numbers, Miskolc Math. Notes 17 (2016), 85-100.

[5] J. J. Bravo and J. L. Herrera, Repdigits in generalized Pell sequences, Archivum Mathematicum 56 (2020), no. 4, 249-262.

[6] J. J. Bravo, J. L. Herrera, and F. Luca, On a generalization of the Pell sequence, Math. Bohema. 146 (2021), no. 2, 199-213.

[7] J. J. Bravo and F. Luca, Powers of two in generalized Fibonacci sequences, Rev. Colombiana Mat. 46 (2012), no. 1, 67-79.

[8] Y. Bugeaud, M. Maurice, and S. Siksek, Classical and modular approaches to exponential Diophantine equations I. Fibonacci and Lucas perfect powers, Ann. Math. 163 (2006), 969-1018.

[9] E. Kili¸c, On the usual Fibonacci and generalized order-k Pell numbers, Ars Combin 109 (2013), 391-403.

[10] S. Chern and A. Cui, Fibonacci numbers close to a power of 2, Fibonacci Quart. 52 (2014), no. 4, 344-348.

[11] A. Dujella and A. Pethö, A generalization of a theorem of Baker and Davenport, Quart. J. Math. Oxford Ser. 49 (1998), no. 2, 291-306.

[12] E. M. Matveev, An explicit lower bound for a homogeneous rational linear form in logarithms of algebraic numbers II, Izv. Ross. Akad. Nauk Ser. Mat. 64, 125-180 (2000). English translation in Izv. Math. 64 (2000), 1217-1269.

[13] B. V. Normenyo, S. E. Rihane, and A. Togbé, Common terms of k-Pell numbers and Padovan or Perrin numbers, Arab. J. Math. 12 (2023), 219-232.

[14] S. Guzmán Sánchez and F. Luca, Linear combinations of factorials and S-units in a binary recurrence sequence, Ann. Math. Québec 38 (2014), 169-188.

[15] M. Waldshmidt, Diophantine approximation on linear algebraic groups: transcendence properties of the exponential function in several variables, Springer-Verag Berlin Heidelberg, 2000.

Cómo citar

APA

Bachabi, M. y Togbe, A. (2024). On k-Pell numbers close to power of 2. Revista Colombiana de Matemáticas, 58(1), 67–80. https://doi.org/10.15446/recolma.v58n1.117434

ACM

[1]
Bachabi, M. y Togbe, A. 2024. On k-Pell numbers close to power of 2. Revista Colombiana de Matemáticas. 58, 1 (nov. 2024), 67–80. DOI:https://doi.org/10.15446/recolma.v58n1.117434.

ACS

(1)
Bachabi, M.; Togbe, A. On k-Pell numbers close to power of 2. rev.colomb.mat 2024, 58, 67-80.

ABNT

BACHABI, M.; TOGBE, A. On k-Pell numbers close to power of 2. Revista Colombiana de Matemáticas, [S. l.], v. 58, n. 1, p. 67–80, 2024. DOI: 10.15446/recolma.v58n1.117434. Disponível em: https://revistas.unal.edu.co/index.php/recolma/article/view/117434. Acesso em: 27 ene. 2025.

Chicago

Bachabi, Mohamadou, y Alain Togbe. 2024. «On k-Pell numbers close to power of 2». Revista Colombiana De Matemáticas 58 (1):67-80. https://doi.org/10.15446/recolma.v58n1.117434.

Harvard

Bachabi, M. y Togbe, A. (2024) «On k-Pell numbers close to power of 2», Revista Colombiana de Matemáticas, 58(1), pp. 67–80. doi: 10.15446/recolma.v58n1.117434.

IEEE

[1]
M. Bachabi y A. Togbe, «On k-Pell numbers close to power of 2», rev.colomb.mat, vol. 58, n.º 1, pp. 67–80, nov. 2024.

MLA

Bachabi, M., y A. Togbe. «On k-Pell numbers close to power of 2». Revista Colombiana de Matemáticas, vol. 58, n.º 1, noviembre de 2024, pp. 67-80, doi:10.15446/recolma.v58n1.117434.

Turabian

Bachabi, Mohamadou, y Alain Togbe. «On k-Pell numbers close to power of 2». Revista Colombiana de Matemáticas 58, no. 1 (noviembre 5, 2024): 67–80. Accedido enero 27, 2025. https://revistas.unal.edu.co/index.php/recolma/article/view/117434.

Vancouver

1.
Bachabi M, Togbe A. On k-Pell numbers close to power of 2. rev.colomb.mat [Internet]. 5 de noviembre de 2024 [citado 27 de enero de 2025];58(1):67-80. Disponible en: https://revistas.unal.edu.co/index.php/recolma/article/view/117434

Descargar cita

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Visitas a la página del resumen del artículo

37

Descargas

Los datos de descargas todavía no están disponibles.