Publicado
On k-Pell numbers close to power of 2
Números de k-Pell cercanos a potencias de 2
DOI:
https://doi.org/10.15446/recolma.v58n1.117434Palabras clave:
Diophantine equations, k-Pell numbers, linear forms in logarithms, reduction method (en)Ecuaciones Diofantina, números k-Pell, formas lineales en logaritmos, metodo de reducción (es)
Descargas
For k ≥ 2, let (P(k)n)n≥2−k be the k-generalized Pell sequence which starts with 0, · · · , 0, 1 (k terms) and each term afterwards is given by the linear recurrence
P(k)n = 2P(k)n-1 + P(k)n-2 + · · · + P(k)n-k, for all n ≥ 2.
An integer n is said to be close to a positive integer m if n satisfies |n−m| < √m. In this paper, we solve the Diophantine inequality
|P(k)n − 2m| < 2m/2,
in positive unknowns k, n, and m.
Para k ≥ 2, sea (P(k)n)n≥2−k la k-sucesión generalizada de Pell que comienza en los valores 0, · · · , 0, 1 (k términos en total) y que satisface la relación de recurrencia
P(k)n = 2P(k)n-1 + P(k)n-2 + · · · + P(k)n-k, para todo n ≥ 2.
Un entero n se denomina cercano a otro entero m si n satisface |n−m| < √m. En este artículo se resuelve la desigualdad Diofantina
|P(k)n − 2m| < 2m/2,
para las indeterminadas enteras k, n, y m
Referencias
[1] A. A¸cikel, N. Irmak, and L. Szalay, The k-generalized Lucas numbers close to a power of 2, To appear in Mathematica Slovaca.
[2] A. Baker and H. Davenport, The equations 3x2−2 = y2 and 8x2−7 = z2, Quart.J of Math. Ser. 20 (1969), no. 2, 129-137.
[3] J. J. Bravo, C. A. Gómez, and J. L. Herrera, k-fibonacci numbers close to a power of 2, Quaest. Math. 44 (2021), no. 12, 1681-1690.
[4] J. J. Bravo, C. A. Gómez, and F. Luca, Power of two as sums of two k-Fibonacci numbers, Miskolc Math. Notes 17 (2016), 85-100.
[5] J. J. Bravo and J. L. Herrera, Repdigits in generalized Pell sequences, Archivum Mathematicum 56 (2020), no. 4, 249-262.
[6] J. J. Bravo, J. L. Herrera, and F. Luca, On a generalization of the Pell sequence, Math. Bohema. 146 (2021), no. 2, 199-213.
[7] J. J. Bravo and F. Luca, Powers of two in generalized Fibonacci sequences, Rev. Colombiana Mat. 46 (2012), no. 1, 67-79.
[8] Y. Bugeaud, M. Maurice, and S. Siksek, Classical and modular approaches to exponential Diophantine equations I. Fibonacci and Lucas perfect powers, Ann. Math. 163 (2006), 969-1018.
[9] E. Kili¸c, On the usual Fibonacci and generalized order-k Pell numbers, Ars Combin 109 (2013), 391-403.
[10] S. Chern and A. Cui, Fibonacci numbers close to a power of 2, Fibonacci Quart. 52 (2014), no. 4, 344-348.
[11] A. Dujella and A. Pethö, A generalization of a theorem of Baker and Davenport, Quart. J. Math. Oxford Ser. 49 (1998), no. 2, 291-306.
[12] E. M. Matveev, An explicit lower bound for a homogeneous rational linear form in logarithms of algebraic numbers II, Izv. Ross. Akad. Nauk Ser. Mat. 64, 125-180 (2000). English translation in Izv. Math. 64 (2000), 1217-1269.
[13] B. V. Normenyo, S. E. Rihane, and A. Togbé, Common terms of k-Pell numbers and Padovan or Perrin numbers, Arab. J. Math. 12 (2023), 219-232.
[14] S. Guzmán Sánchez and F. Luca, Linear combinations of factorials and S-units in a binary recurrence sequence, Ann. Math. Québec 38 (2014), 169-188.
[15] M. Waldshmidt, Diophantine approximation on linear algebraic groups: transcendence properties of the exponential function in several variables, Springer-Verag Berlin Heidelberg, 2000.