Publicado
Ineffable sets and large cardinals
Conjuntos inefables y grandes cardinales
DOI:
https://doi.org/10.15446/recolma.v58n2.121035Palabras clave:
Ineffable set, reflecting cardinal, Woodin cardinal, stationary reflection property (en)Conjunto inefable, cardinal reflejante, cardinal de Woodin, propiedad de reflexión estacionaria (es)
Descargas
Suppose κ is a regular cardinal. We prove that if the set of Hλ+-reflecting cardinals λ < κ is ineffable, then κ is an Hκ+-reflecting cardinal. Similarly, we also prove that if the set of Woodin cardinals/cardinals having the stationary reflection property below κ is ineffable, then κ is a Woodin cardinal/cardinal having the stationary reflection property.
Probamos que si el conjunto de cardinales λ bajo κ tales que λ es cardinal Hλ+-reflejante es un subconjunto inefable de κ entonces κ resulta ser un cardinal Hκ+-reflejante. De manera similar para la propiedades de ser cardinal de Woodin y la propiedad de reflexión estacionaria: si el conjunto de los cardinales λ bajo κ tales que λ es cardinal de Woodin (se satisface RP(λ)) es un subconjunto inefable de κ entonces κ es cardinal de Woodin (se tiene RP(κ)).
Referencias
[1] F. C´ardenas, Ineffable limits of weakly compact cardinals and similar results, Revista Colombiana de Matem´aticas 54 (2020), no. 2, 181-186. DOI: https://doi.org/10.15446/recolma.v54n2.93846
[2] T. Jech, Set Theory. The Third Millennium Edition, revised and expanded, fourth ed., Springer-Verlag, Berlin, Heidelberg, New York, 2006.
[3] T. Miyamoto, A note on weak segments of PFA. In Proceedings of the Sixth Asian Logic Conference (Beijing, 1996), World Scientific Publishing, River Edge, 1998. DOI: https://doi.org/10.1142/9789812812940_0011
[4] A. Villaveces, Chains of end elementary extensions of models of set theory, Journal of Symbolic Logic 63 (1998), no. 3, 1116-1136. DOI: https://doi.org/10.2307/2586730
