Publicado
On b-generalized derivations and commutativity of prime rings
Derivadas b-generalizadas y conmutatividad de anillos primos
DOI:
https://doi.org/10.15446/recolma.v58n2.121037Palabras clave:
Prime ring, Martindale quotient ring, b-Generalized derivation (en)Anillos primo, anillo de cocientes de Martindale, derivadas b-generalizadas (es)
Descargas
Let A be a prime ring, Z(A) its center, Q its right Martindale quotient ring, C its extended centroid, ψ a non-zero b-generalized derivation of A with associated map ξ. In this article, we prove that: (i) If [ψ(x), ψ(y)] = 0 for all x, y ∈ A, then A is either commutative or there exists q ∈ Q such that ξ = ad(q), ψ(x) = -bxq, and qb = 0. (ii) If ψ(x) ◦ ψ(y) = 0 for all x, y ∈ A, then A is either commutative with char(A) = 2 or there exists q ∈ Q such that ψ(x) = -bxq and qb = 0. Additional results are established for cases involving [ξ(x), ψ(x)] = 0 or ξ(x)◦ψ(x) = 0, where char(A) = 2. Furthermore, we give some examples that show the importance of the hypotheses of our theorems.
Sea A un anillo primo, Z(A) su centro, Q su anillo de cocientes de Martindale por derecha, C su centroide extendido, ψ una derivada b-generalizada de A con mapa asociado ξ. En este artículo probamos los siguientes resultados: (i) Si [ψ(x), ψ(y)] = 0 para todo x, y ∈ A, entonces o A es conmutativo o existe q ∈ Q tal que ξ = ad(q), ψ(x) = -bxq, y qb = 0. (ii) Si ψ(x) ◦ ψ(y) = 0 para todo x, y ∈ A, entonces o A es conmutativo con char(A) = 2 o existe q ∈ Q tal que ψ(x) = -bxq y qb = 0. También se analizan los casos donde [ξ(x), ψ(x)] = 0 o ξ(x) ◦ ψ(x) = 0, donde char(A) = 2. Se incluyen ejemplos que ilustran la importancia de las hipótesis de los teoremas.
Referencias
[1] H. M. Alnoghashi A. S. Alali and N. Rehman, Centrally extended jordan (∗)-derivations centralizing symmetric or skew elements, Axioms 12 (2023), no. 1, 86. DOI: https://doi.org/10.3390/axioms12010086
[2] M. Ashraf and N. Rehman, On derivation and commutativity in prime rings, East-West J. Math. 3 (2001), no. 1, 87-91. DOI: https://doi.org/10.1007/BF03323547
[3] N. Bera and B. Dhara, b-generalized skew derivations acting on multilinear polynomials in prime rings, Commun. Algebra (2024), 1-20, DOI: 10.1080/00927872.2024.2389975.
[4] N. Bera and B. Dhara, A note on b-generalized (α, β)-derivations in prime rings, Georgian Math. J (2024), DOI: 10.1515/gmj-2023-2121.
[5] M. Bresar, On functional identities of degree two, J. Algebra 172 (1995), 690-720. DOI: https://doi.org/10.1006/jabr.1995.1066
[6] V. De Filippis and F. Wei, b-generalized skew derivations on Lie ideals, Mediterr. J. Math. 15 (2018), no. 65, 1-24. DOI: https://doi.org/10.1007/s00009-018-1103-2
[7] C. Gupta, On b-generalized derivations in prime rings, Rend. Circ. Mat. Palermo (2) 72 (2023), no. 4, 2703-2720, DOI: 10.1007/s12215-022-00817-9.
[8] S. Naji H. M. Alnoghashi and N. Rehman, On multiplicative (generalized)-derivation involving semiprime ideals, J. Math. 3 (2023), 7, Article ID 8855850. DOI: https://doi.org/10.1155/2023/8855850
[9] I. N. Herstein, Rings with involution, University of Chicago Press, Chicago, 1976.
[10] I. N. Herstein, A note on derivations, Canad. Math. Bull. 21 (1978), 369-370. DOI: https://doi.org/10.4153/CMB-1978-065-x
[11] S. Huang, b-generalized derivations on prime rings, J. Math. Res. Appl. 41 (2021), no. 4, 349-354. DOI: https://doi.org/10.7151/dmgaa.1373
[12] S. Huang, On generalized derivations and commutativity of prime rings with involution, Commun. Algebra 51 (2023), no. 8, 3521-3527. DOI: https://doi.org/10.1080/00927872.2023.2186131
[13] B. Hvala, Generalized derivations in rings, Commun. Algebra 26 (1998), no. 4, 1147-1166. DOI: https://doi.org/10.1080/00927879808826190
[14] W. S. Martindale-III K. I. Beidar and A. V. Mikhalev, Rings with Generalized Identities, Monographs and Textbooks in Pure and Applied Mathematics, 196 (Marcel Dekker, Inc, New York), 1996.
[15] T. Y. Kao and C. K. Liu, Triple derivable maps on prime algebras with involution, Commun. Algebra 51 (2023), no. 9, 3810-3824. DOI: https://doi.org/10.1080/00927872.2023.2189956
[16] M. S. Khan and A. N. Khan, An engel condition with b-generalized derivations in prime rings, Miskolc Math Notes 24 (2023), no. 2, 819, DOI: 10.18514/MMN.2023.4001.
[17] M. T. Kosan and T. K. Lee, b-generalized derivations of semiprime rings having nilpotent values, J. Aust. Math. Soc. 96 (2014), 326-337. DOI: https://doi.org/10.1017/S1446788713000670
[18] T. K. Lee, Semiprime rings with differential identities, Bull. Inst. Math. Acad. Sinica 20 (1992), no. 1, 27-38.
[19] P. K. Liau and C. K. Liu, An engel condition with b-generalized derivations for lie ideals, J. Algebra Appl. 17 (2018), no. 3, 1850046. DOI: https://doi.org/10.1142/S0219498818500469
[20] C. K. Liu, An engel condition with b-generalized derivations, Linear Multilinear Algebra 65 (2017), no. 2, 300-312, DOI: 10.1080/03081087.2016.1183560.
[21] E. Sogutcu N. Rehman and H. M. Alnoghashi, A generalization of posner’s theorem on generalized derivations in rings, J. Iran. Math. Soc. 3 (2022), no. 1, 1-9.
[22] H. M. Alnoghashi N. Rehman and M. Hongan, A note on generalized derivations on prime ideals, J. Algebra Relat. Top. 10 (2022), no. 1, 159-169.
[23] M. Hongan N. Rehman and H. M. Alnoghashi, On generalized derivations involving prime ideals, Rend. Circ. Mat. Palermo (2) 71 (2022), no. 2, 601-609. DOI: https://doi.org/10.1007/s12215-021-00639-1
[24] T. Pehlivan and E. Alba˚A, b-generalized derivations on prime rings, Ukr. Math. J. 74 (2022), no. 6, 953-966, DOI: 10.1007/s11253-022-02109-y.
[25] B. Prajapati and C. Gupta, On b-generalized skew derivations having centralizing commutator in prime rings, Commun. Algebra 50 (2022), no. 7, 2997-3006, DOI: 10.1080/00927872.2021.2024560.
[26] F. Rania, Power central valued b-generalized skew derivations on lie ideals, Rend. Circ. Mat. Palermo (2) 73 (2024), no. 4, 1385-1393, DOI: 10.1007/s12215-023-00989-y.
[27] N. Rehman and H. M. Alnoghashi, Commutativity of prime rings with generalized derivations and anti-automorphisms, Georgian Math. J. 29 (2022), no. 4, 583-594. DOI: https://doi.org/10.1515/gmj-2022-2156
[28] N. Rehman and H. M. A. Abdelkarim Boua, Identities in a prime ideal of a ring involving generalized derivations, Kyungpook Math. J. 61 (2021), no. 4, 727-735.
[29] S. K. Tiwari and P. Gupta, Identities involving b-generalized skew derivations in prime rings acting as jordan derivation, Commun. Algebra 52 (2024), no. 11, 4612-4630, DOI: 10.1080/00927872.2024.2354425.
