Publicado

2025-06-19

Inertial Halpern-type method for solving monotone variational inequality and fixed point problems in Banach spaces

Método inercial de tipo Halpern para resolver desigualdades variacionales monótonas y problemas de punto fijo en espacios de Banach

DOI:

https://doi.org/10.15446/recolma.v58n2.121038

Palabras clave:

Inertial method, Halpern Tseng’s extradient subgradient method, monotone variational inequality problem, demigeneralized mapping, Strong convergence, Banach space (en)
convergencia fuerte, espacio de Banach, método inercial, método de Halpern Tseng de subgradiente, problema de desigualdad variacional monótona (es)

Descargas

Autores/as

  • Ikechukwu G. Ezugorie Enugu State University of Science and Technology
  • Lawal Y. Haruna Kaduna State University
  • Godwin C. Ugwunnadi University of Eswatini
  • Eric U. Ofoedu Nnamdi Azikiwe University

In this paper, we introduce inertial Tseng’s method and Halperntype algorithm for solving monotone variational inequality and fixed point problems in 2-uniformly convex and 2-uniformly smooth real Banach spaces. We establish strong convergence of our proposed method under some assumptions on parameters without knowledge of the operator norm. Finally, we give numerical experiments to illustrate the efficiency of our main result.

En este artículo aplicamos el método de Tseng y algoritmos de tipo Halpern para resolver problema de desigualdad variacional monótona y problemas de punto fijo en espacios reales de Banach 2-uniformemente convexos y 2-uniformemente suaves. Probamos la convergencia fuerte del método propuesto bajo hipótesis sobre los parámetros que no dependen de la norma del operador. Finalmente presentamos ejemplos numéricos que ilustran nuestros resultados.

Referencias

[1] Z. G. Makukula A. R. Khan, G. C. Ugwunnadi and M. Abbas, Strong convergence of inertial subgradient extragradient method for solving variational inequality in Banach space, Carpathian J. Math. 35 (2019), no. 3, 327-338.

[2] Y. I. Alber, Metric and generalized projection operators in Banach spaces: Properties and applications, in: A.G. Kartsatos (Ed.), Theory and Applications of Nonlinear Operators of Accretive and Monotone Type, in: Lecture Notes Pure Appl. Math. 178 (1996), 15-50, Dekker, New York.

[3] Y. I. Alber and S. Guerre-Delabriere, On the projection methods for fixed point problems, Analysis 21 (2001), 17-39. DOI: https://doi.org/10.1524/anly.2001.21.1.17

[4] Y. I. Alber and S. Reich, An iterative method for solving a class of nonlinear operator equations in banach spaces, Panamer. Math. J 4 (1994), 39-54.

[5] M. S. Lawan B. Ali, G. C. Ugwunnadi and A. R. Khan, Modified inertial subgradient extragradient method in reflexive banach space, Bol. Soc. Mat. Mex 27 (2021), no. 1, 30, DOI: 10.1007/s40590-021-00332-4.

[6] C. Baiocchi and A. Capelo, Variational and quasivariational inequalities, Applications to free boundary problems, Wiley, New York, 1984.

[7] C. E. Chidume and M. O. Nnakwe, Convergence theorems of subgradient extragradient algorithm for solving variational inequalities and a convex feasibility problem, J. Fixed Point Theory Appl 2018 (2018), 16. DOI: https://doi.org/10.1186/s13663-018-0641-4

[8] I. Cioranescu, Geometry of Banach spaces, duality mappings and nonlinear problems, Kluwer Academic Dordrecht, 1990. DOI: https://doi.org/10.1007/978-94-009-2121-4

[9] F. Facchinei and J. S. Pang, Finite-dimensional variational inequalities and complementarity problems, Springer Series in Operations Research, vol. II. Springer, New York, 2003. DOI: https://doi.org/10.1007/b97544

[10] G. C. Ugwunnadi H. A. Abass and O. K. Narain, A Modified inertial Halpern method for solving split monotone variational inclusion problems in Banach Spaces, Rend. Circ. Mat. Palermo, II. Ser. 72 (2023), 2287-2310, https://doi.org/10.1007/s12215-022-00795-y.

[11] D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and their Applications, Academic Press, New York, 1980.

[12] I. Konnov, Combined Relaxation Methods for Variational Inequalities, Springer, Berlin, 2001. DOI: https://doi.org/10.1007/978-3-642-56886-2

[13] G. M. Korpelevich, The extragradient method for finding saddle points and other problems, Ekon. Mat. Metody 12 (1976), 747-756.

[14] R. Kraikaew and S. Saejung, Strong convergence of the Halpern subgradient extragradient Method for sovlving Variational Inequalities in Hilbert Spaces, J. Optim. Theory Appl 163 (2014), 399-412. DOI: https://doi.org/10.1007/s10957-013-0494-2

[15] T. O. Alakoya L. O. Jolaoso, A. Taiwo and O. T. Mewomo, A self adaptive inertial subgradient extragradient algorithm for variational inequality and common fixed point of multivalued mappings in Hilbert spaces, Demonstr.

Math. 52 (2019), 183-203. DOI: https://doi.org/10.1515/dema-2019-0013

[16] Y. Liu, Strong convergence of the halpern subgradient extragradient method for solving variational inequalities in banach spaces, J. Nonlinear Sci. Appl. 10 (2017), 395-409. DOI: https://doi.org/10.22436/jnsa.010.02.06

[17] P. E. Maing´e, Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization, Set-Valued Anal. 16 (2008), 899-912. DOI: https://doi.org/10.1007/s11228-008-0102-z

[18] S. Matsushita and W. Takahashi, A strong convergence theorem for relatively nonexpansive mappings in Banach spaces, J. Approx. Theory 134 (2005), 257-266. DOI: https://doi.org/10.1016/j.jat.2005.02.007

[19] W. Nilsrakoo and S. Saejung, Strong convergence theorems by Halpern-Mann iterations for relatively nonexpansive maps in Banach spaces, App. Math. Comput 217 (2011), 6577-6586. DOI: https://doi.org/10.1016/j.amc.2011.01.040

[20] K. O. Aremu and M. O. Olayiwola O. Koyewole, L. O. Jolaoso, Inertial self-adaptive Bregman projection method for finite family of variational inequality problems in reflexive Banach spaces, Comp. Appl. Math. 41 (2022), no. 273, https://doi.org/10.1007/s40314-022-01969-1.

[21] S. Reich, A weak convergence theorem for the alternating method with Bregman distance, in: A.G.Kartsatos (Ed.), Theory and Applications of Nonlinear Operators of Accretive and Monotone Type, Marcel Dekker, New York, 1996.

[22] Y. Shehu, Single projection algorithm for variational inequalities in Banach spaces with applications to contact problems, Acta Math. Sci., Ser. B (Engl. Ed.) 40 (2020), 1045-1063. DOI: https://doi.org/10.1007/s10473-020-0412-2

[23] M. V. Solodov and B. F. Svaiter, A new projection method for variational inequality problems, SIAM J. Control Optim. 37 (1999), 765-776. DOI: https://doi.org/10.1137/S0363012997317475

[24] M. V. Solodov and P. Tseng, Modified projection-type methods for monotone variational inequalities, SIAM J. Control Optim. 34 (1996), 1814-1830. DOI: https://doi.org/10.1137/S0363012994268655

[25] W. Takahashi, Nonlinear functional analysis, Yokohama Publishers, Yokohama, 2000.

[26] D. V. Thong and P. T. Vuong, Modified Tsengˆas extragradient methods for solving pseudo-monotone variational inequalities, Optimization 68 (2019), 2207-2226. DOI: https://doi.org/10.1080/02331934.2019.1616191

[27] P. Tseng, A modified forward-backward splitting method for maximal monotone mappings, SIAM J. Control Optim. 38 (2009), 431-446. DOI: https://doi.org/10.1137/S0363012998338806

[28] C. F. Wen W. Takahashi and J. C. Yao, Strong convergence theorem by shrinking projection method for new nonlinear mappings in Banach spaces and applications, Optimization 66 (2017), 609-621. DOI: https://doi.org/10.1080/02331934.2016.1276180

[29] H. K. Xu, Inequalities in Banach spaces with applications, Nonlinear Anal. 16 (1991), 1127-1138. DOI: https://doi.org/10.1016/0362-546X(91)90200-K

[30] H. K. Xu, Iterative algorithms for nonlinear operators, J. London Math. Soc. 66 (2002), 240-256. DOI: https://doi.org/10.1112/S0024610702003332

[31] A. Gibali Y. Censor and S. Reich, Strong convergence of subgradient extragradient methods for the variational inequality problem in Hilbert space, Optim. Methods Softw. 26 (2011), 827-845. DOI: https://doi.org/10.1080/10556788.2010.551536

[32] A. Gibali Y. Censor and S. Reich, The subgradient extragradient method for solving variational inequalities in Hilbert spaces, J. Optim. Theory Appl 148 (2011), 318-335. DOI: https://doi.org/10.1007/s10957-010-9757-3

[33] Q. L. Dong Y. Shehu and D. Jiang, Single projection method for pseudomonotone variational inequality in Hilbert spaces, Optimization 68 (2019), 385-409. DOI: https://doi.org/10.1080/02331934.2018.1522636

Cómo citar

APA

Ezugorie, I. G., Haruna, L. Y., Ugwunnadi, G. C. & Ofoedu, E. U. (2025). Inertial Halpern-type method for solving monotone variational inequality and fixed point problems in Banach spaces. Revista Colombiana de Matemáticas, 58(2), 165–189. https://doi.org/10.15446/recolma.v58n2.121038

ACM

[1]
Ezugorie, I.G., Haruna, L.Y., Ugwunnadi, G.C. y Ofoedu, E.U. 2025. Inertial Halpern-type method for solving monotone variational inequality and fixed point problems in Banach spaces. Revista Colombiana de Matemáticas. 58, 2 (jun. 2025), 165–189. DOI:https://doi.org/10.15446/recolma.v58n2.121038.

ACS

(1)
Ezugorie, I. G.; Haruna, L. Y.; Ugwunnadi, G. C.; Ofoedu, E. U. Inertial Halpern-type method for solving monotone variational inequality and fixed point problems in Banach spaces. rev.colomb.mat 2025, 58, 165-189.

ABNT

EZUGORIE, I. G.; HARUNA, L. Y.; UGWUNNADI, G. C.; OFOEDU, E. U. Inertial Halpern-type method for solving monotone variational inequality and fixed point problems in Banach spaces. Revista Colombiana de Matemáticas, [S. l.], v. 58, n. 2, p. 165–189, 2025. DOI: 10.15446/recolma.v58n2.121038. Disponível em: https://revistas.unal.edu.co/index.php/recolma/article/view/121038. Acesso em: 27 dic. 2025.

Chicago

Ezugorie, Ikechukwu G., Lawal Y. Haruna, Godwin C. Ugwunnadi, y Eric U. Ofoedu. 2025. «Inertial Halpern-type method for solving monotone variational inequality and fixed point problems in Banach spaces». Revista Colombiana De Matemáticas 58 (2):165-89. https://doi.org/10.15446/recolma.v58n2.121038.

Harvard

Ezugorie, I. G., Haruna, L. Y., Ugwunnadi, G. C. y Ofoedu, E. U. (2025) «Inertial Halpern-type method for solving monotone variational inequality and fixed point problems in Banach spaces», Revista Colombiana de Matemáticas, 58(2), pp. 165–189. doi: 10.15446/recolma.v58n2.121038.

IEEE

[1]
I. G. Ezugorie, L. Y. Haruna, G. C. Ugwunnadi, y E. U. Ofoedu, «Inertial Halpern-type method for solving monotone variational inequality and fixed point problems in Banach spaces», rev.colomb.mat, vol. 58, n.º 2, pp. 165–189, jun. 2025.

MLA

Ezugorie, I. G., L. Y. Haruna, G. C. Ugwunnadi, y E. U. Ofoedu. «Inertial Halpern-type method for solving monotone variational inequality and fixed point problems in Banach spaces». Revista Colombiana de Matemáticas, vol. 58, n.º 2, junio de 2025, pp. 165-89, doi:10.15446/recolma.v58n2.121038.

Turabian

Ezugorie, Ikechukwu G., Lawal Y. Haruna, Godwin C. Ugwunnadi, y Eric U. Ofoedu. «Inertial Halpern-type method for solving monotone variational inequality and fixed point problems in Banach spaces». Revista Colombiana de Matemáticas 58, no. 2 (junio 19, 2025): 165–189. Accedido diciembre 27, 2025. https://revistas.unal.edu.co/index.php/recolma/article/view/121038.

Vancouver

1.
Ezugorie IG, Haruna LY, Ugwunnadi GC, Ofoedu EU. Inertial Halpern-type method for solving monotone variational inequality and fixed point problems in Banach spaces. rev.colomb.mat [Internet]. 19 de junio de 2025 [citado 27 de diciembre de 2025];58(2):165-89. Disponible en: https://revistas.unal.edu.co/index.php/recolma/article/view/121038

Descargar cita

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Visitas a la página del resumen del artículo

270

Descargas

Los datos de descargas todavía no están disponibles.