Publicado
Some new Hadamard-type inequalities via fractional integral operators
Algunas nuevas desigualdades tipo Hadamard a través de operadores integrales fraccionarios
DOI:
https://doi.org/10.15446/recolma.v59n1.122851Palabras clave:
Convex functions, Hadamard's inequality, Hölder's inequality, fractional calculus, special functions (en)Funciones convexas, desigualdad de Hadamard, desigualdad de Hölder, cálculo fraccional, funciones especiales (es)
Descargas
The article presents new inequalities of Hadamard-type which are obtained using fractional integral operators belonging to a function whose third-order derivative is convex. The proposed Hadamard-type inequalities have the potential for application in various areas where it is required to estimate the properties of functions with a convex third-order derivative. Examples of functions are given based on a comparative analysis of the estimates of the upper bounds of the Hadamard-type inequalities obtained using the classical and extended H¨older inequalities. Finally, applications to special functions are provided.
El artículo presenta nuevas desigualdades de tipo Hadamard que se obtienen utilizando operadores integrales fraccionarios pertenecientes a una función cuya derivada de tercer orden es convexa. Las desigualdades de tipo Hadamard propuestas tienen potencial de aplicación en diversas áreas donde se requiere estimar las propiedades de funciones con una derivada convexa de tercer orden. Se dan ejemplos de funciones basados en un análisis comparativo de las estimaciones de los límites superiores de las desigualdades de tipo Hadamard obtenidas utilizando las desigualdades Hölder clásica y extendida. Finalmente, se proporcionan aplicaciones a funciones especiales.
Referencias
[1] P. Agarwal, S. S. Dragomir, M. Jleli, and B. Samet, Advances in Mathematical Inequalities and Applications, 1st ed., Springer Nature Singapore, Singapore, 2018.
[2] B. Bayraktar, Some integral inequalities for functions whose absolute values of the third derivative is concave and r-convex, Turkish J. Ineq. 4 (2020), no. 2, 59-78.
[3] B. Bayraktar, S. I. Butt, Sh. Shaukat, and J. E. Nápoles Valdés, New Hadamard Type inequalities via (s,m1,m2)-convex functions, Vestn. Udmurt. Univ., Mat. Mekh. Komp'yut. Nauki 31 (2021), no. 4, 597-612.
[4] S. I. Butt and A. Khan, New fractal-fractional parametric inequalities with applications, Chaos, Solitons & Fractals 172 (2023), 113529.
[5] S. I. Butt and J. Pecaric, Generalized Hermite-Hadamard’s inequality, Proc. A. Razmadze Math. Inst. 163 (2013), 9-27.
[6] S. I. Butt, M. Umar, and H. Budak, New Study on the Quantum Midpoint-Type Inequalities for Twice q-Differentiable Functions via the Jensen-Mercer Inequality, Symmetry 15 (2023), no. 5, 1038.
[7] L. Chun and F. Qi, Integral Inequalities of Hermite-Hadamard Type for Functions Whose 3rd Derivatives Are s-Convex, Applied Mathematics 3 (2012), no. 11, 1680-1685.
[8] L. Chun and F. Qi, Integral inequalities of Hermite-Hadamard type for functions whose third derivatives are convex, J. Inequal. Appl. 2013 (2013), 451.
[9] L. Chun and F. Qi, Inequalities of Simpson Type for Functions Whose Third Derivatives Are Extended s-Convex Functions and Applications to Means, J. Comput. Anal. Appl. 19 (2015), no. 3, 555-569.
[10] S. S. Dragomir and C. E. M. Pearce, Selected Topics on Hermite-Hadamard Inequalities and Applications, RGMIA Monographs, Victoria University, 2000.
[11] F. Hezenci and H. Budak, A note on fractional Simpson-like type inequalities for functions whose third derivatives are convex, Filomat 37 (2023), no. 12, 3715-3724.
[12] I. Iscan, New refinements for integral and sum forms of H¨older inequality, J. Inequal. Appl. 2019 (2019), 304.
[13] M. Kadakal, I. Iscan, H. Kadakal, and K. Bekar, On improvements of some integral inequalities, Honam Math. J. 43 (2021), no. 3, 441-452.
[14] Y. Li and T. Du, Some Simpson type integral inequalities for functions whose third derivatives are (α,m)-GA-convex functions, J. Egyptian Math. Soc. 24 (2016), no. 2, 175-180.
[15] Y. L. Luke, The Special Functions and Their Approximations, Vol. 1, Academic Press, New York, 1969.
[16] K. Mehrez and P. Agarwal, New Hermite-Hadamard type integral inequalities for convex functions and their applications, J. Comput. Appl. Math. 350 (2019), 274-285.
[17] D. S. Mitrinovic, J. E. Pecaric, and A. M. Fink, Classical and New Inequalities in Analysis, Kluwer Academic, Dordrecht, 1993.
[18] J. E. Nápoles Valdés and B. Bayraktar, On the generalized inequalities of the Hermite-Hadamard type, Filomat 35 (2021), no. 14, 4917-4924.
[19] J. E. Nápoles Valdés, B. Bayraktar, and S. I. Butt, New integral inequalities of Hermite-Hadamard type in a generalized context, Punjab Univ. J. Math. 53 (2021), no. 11, 765-777.
[20] J. Park, Hermite-Hadamard type inequalities for functions whose third derivatives are convex and s-convex, Applied Mathematical Sciences 58 (2014), no. 1, 13-31.
[21] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.
[22] M. Z. Sarikaya, E. Set, H. Yaldiz, and N. Basak, Hermite-Hadamard’s inequalities for fractional integrals and related fractional inequalities, Math. Comput. Modelling 57 (2013), no. 9-10, 2403-2407.
[23] E. Set, S. I. Butt, A. O. Akdemir, A Karaoglan, and T. Abdeljawad, New integral inequalities for differentiable convex functions via Atangana-Baleanu fractional integral operators, Chaos, Solitons & Fractals 143 (2021), 110554.
[24] Y. Shuang, F. Qi, and Y. Wang, Some inequalities of Hermite-Hadamard type for functions whose second derivatives are (α,m)-convex, J. Nonlinear Sci. Appl. 9 (2016), 139-148.
[25] G. N. Watson, A treatise on the theory of Bessel functions, Cambridge Univ. Press, Cambridge, 1922.
[26] S. H. Wu, B. Sroysang, J. S. Xie, and Y. M. Chu, Parametrized inequality of Hermite-Hadamard type for functions whose third derivative absolute values are quasi-convex, SpringerPlus 4 (2015), 831.
[27] X. Yuan, L. Xu, and T. Du, Simpson-like inequalities for twice differentiable (s, P)-convex mappings involving with AB-fractional integrals and their applications, Fractals 31 (2023), no. 3, 2350024.
