Publicado
Existence of solutions for some degenerate elliptic equation under Fourier boundary conditions
Existencia de soluciones para alguna ecuación elíptica degenerada en condiciones de contorno de Fourier
DOI:
https://doi.org/10.15446/recolma.v59n1.122852Palabras clave:
Anisotropic variable exponent Sobolev space, quasilinear elliptic problem, Hardy potential, Fourier boundary conditions, renormalized solution, L1-data (en)Espacio de Sobolev de exponente variable anisotrópico, problema elíptico cuasilineal, potencial de Hardy, condiciones de contorno de Fourier, solución renormalizada, L1-datos (es)
Descargas
This paper aims to study the existence of renormalized solutions for the anisotropic elliptic problem with a Hardy potential and Fourier boundary conditions
−ΣNi=1 Di ai(x, u, ∇u) + α|u|r(x) - 1 u = ν |u|p0(x)−2u /|x|p0(x) + f(x) in Ω,
ΣNi=1 ai(x, u, ∇u) · ni + λu = g(x) on ∂Ω,
where Ω is an open bounded subset of RN (N ≥ 2), the data f belongs to L1(Ω), g ∈ L1(∂Ω) and α, λ, ν > 0. with ai(x, s, ξ) are Carath´eodory functions that verifying some nonstandard conditions.
Este artículo tiene como objetivo estudiar la existencia de soluciones renormalizadas para el problema elíptico anisotrópico con un potencial de Hardy y condiciones de borde de Fourier
−ΣNi=1 Di ai(x, u, ∇u) + α|u|r(x) - 1 u = ν |u|p0(x)−2u /|x|p0(x) + f(x) in Ω,
ΣNi=1 ai(x, u, ∇u) · ni + λu = g(x) on ∂Ω,
donde Ω es un subconjunto abierto y acotado de RN (N ≥ 2), los datos f pertenecen a L1(Ω), g ∈ L1(∂Ω) y α, λ, ν > 0. con ai(x, s, ξ) son funciones de Carathéodoria que verifican algunas condiciones no estándar.
Referencias
[1] B. Abdellaoui, A. Attar, and S. E. Miri, Nonlinear singular elliptic problem with gradient term and general datum, Math. Anal. Appl. 409 (2014), no. 1, 362-377.
[2] B. Abdellaoui, I. Peral, and A. Primo, Elliptic problems with a Hardy potential and critical growth in the gradient: non-resonance and blow-up results, J. Differ. Equations 239 (2007), no. 2, 386-416.
[3] B. Abdellaoui, I. Peral, and A. Primo, Breaking of resonance and regularizing effect of a first order quasilinear term in some elliptic equations, Ann. Inst. H. Poincaré C Anal. Non Linéaire 25 (2008), no. 5, 969-985.
[4] F. Andereu, J.M. Mazón, S. Segura De león, and J. Teledo, Quasi-linear elliptic and parabolic equations in L1 with non-linear boundary conditions, Adv. Math. Sci. Appl. 7 (1997), 183-213.
[5] E. Azroul, M. Bouziani, H. Hjiaj, and A. Youssfi, Existence of solutions for some quasilinear elliptic problem with Hardy potential, Math. Bohem. 144 (2019), no. 3, 299-324.
[6] M. Benboubker, H. Benkhalou, H. Hjiaj, and I. Nyanquini, Entropy solutions for elliptic Schrödinger type equations under Fourier boundary conditions, Rend. Circ. Mat. Palermo (2) 72 (2023), no. 4, 2831-2855.
[7] M. B. Benboubker, H. Benkhalou, and H. Hjiaj, Weak and renormalized solutions for anisotropic Neumann problems with degenerate coercivity, Bol. Soc. Parana. Mat. 46 (2023), no. 7, 181-212.
[8] M. B. Benboubker, R. Bentahar, M. El Lekhlifi, and H. Hjiaj, Existence of renormalized solutions for some non-coercive anisotropic elliptic problems with Neumann boundary condition, Rend. Mat. Appl. 46 (2025), no. 7, 181-212.
[9] M. B. Benboubker, H. Hjiaj, and S. Ouaro, Entropy solutions to nonlinear elliptic anisotropic problem with variable exponent, Appl. Anal. Comput. 4 (2014), no. 3, 245-270.
[10] Ph. Bénilan, L. Boccardo, T. Gallouët, R. Gariepy, M. Pierre, and J. L. Vázquez, An L1-theory of existence and uniqueness of solutions of nonlinear elliptic equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 22 (1995), no. 4, 241-273.
[11] M. F. Betta, A. Mercaldo, F. Murat, and M. M. Porzio, Existence of renormalized solutions to nonlinear elliptic equations with lower-order terms and right-hand side measure, J. Math. Pures Appl. 81 (2002), no. 6, 533-566.
[12] D. Blanchard and F. Murat, Renormalized solution for nonlinear parabolic problems with L1 data, existence and uniqueness, Proc. Roy. Soc. Edinburgh Sect. A 127 (1997), 1137-1152.
[13] D. Blanchard, F. Murat, and H. Redwane, Existence and uniqueness of a renormalized solution for a fairly general class of nonlinear parabolic problems, J. Differential Equations 177 (2001), 331-374.
[14] L. Boccardo, D. Giachetti, J. I. Diaz, and F. Murat, Existence and regularity of renormalized solutions for some elliptic problems involving derivatives of nonlinear terms, J. Differential Equations 106 (1993), no. 2, 215-237.
[15] L. Boccardo, L. Orsina, and I. Peral, A remark on existence and optimal summability of solutions of elliptic problems involving Hardy potential, Discrete Contin. Dyn. Syst. 16 (2006), no. 3, 513-523.
[16] H. Brezis and X. Cabré, Some simple nonlinear PDE without solutions, Boll. Unione Mat. Ital. 1-B (1998), no. 2, 223-262.
[17] H. Brezis, L. Dupaigne, and A. Tesei, On a semilinear equation with inverse-square potential, Selecta Math. 11 (2005), 1-19.
[18] G. DalMaso, F. Murat, L. Orsina, and A. Prignet, Renormalized solutions of elliptic equations with general measure data, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 28(4) (1999), no. 4, 741-808.
[19] L. Diening, P. Harjulehto, P. Hästö, and M. Razicka, Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Mathematics, Springer, Heidelberg, Germany, 2017 (2011).
[20] R. J. DiPerna and P.-L. Lions, On the Cauchy problem for Boltzmann equations: global existence and weak stability, Ann. of Math. 130(2) (1989), no. 2, 321-366.
[21] X. L. Fan and D. Zhao, On the generalised Orlicz-Sobolev Space Wk,p(x)(Ω), J. Gansu Educ. College. 12 (1998), no. 1, 1-6.
[22] E. Hewitt and K. Stromberg, Real and abstract analysis, Springer-verlng, Berlin Heidelberg New York, 1965.
[23] I. Ibrango and S. Ouaro, Entropy solution for doubly nonlinear elliptic anisotropic problems with Fourier boundary conditions, Discuss. Math. Differ. Incl. Control Optim 35 (2015), no. 1, 123-150.
[24] I. Konate and S. Ouaro, Multivalued anisotropic problem with Fourier boundary condition involving diffuse Radon measure data and variable exponents, Glas. Mat. Ser. III 54(74) (2019), no. 1, 211-232.
[25] J. L. Lions, Quelques méthodes de résolution des problèmes aux limites non lin´eaires, Dunod et Gauthiers-Villars, Paris, 1969.
[26] M. Mihailescu, P. Pucci, and V. Radulescu, Eigenvalue problems for anisotropic quasilinear elliptic equations with variable exponent, J. Math. Anal. Appl. 340 (2008).
[27] F. Murat, Soluciones renormalizadas de EDP elipticas no lineales, Laboratoire d’Analyse Numerique, Paris VI, R93023, 1993.
[28] F. Murat, Equations elliptiques non lin´eaires avec second membre l1 ou mesure, Comptes Rendus du 26ème Congrés National d’Analyse Numèrique, Les Karellis (1994).
[29] M. M. Porzio, On some quasilinear elliptic equations involving Hardy potential, Rend. Mat. Appl. seven 27 (2007), no. 3-4, 277-297.
[30] A. Youssfi, E. Azroul, and H. Hjiaj, On nonlinear elliptic equations with Hardy potential and L1-data, Monatsh. Math. 173 (2014), no. 1, 107-129.
[31] D. Zhao, W. J. Qiang, and X.L. Fan, On generalized Orlicz spaces Lp(x)(Ω), J. Gansu Sci. 9 (1997), no. 2, 1-7.
