Publicado
Pillai’s Problem with Padovan Numbers and Prime Powers
El problema de Pillai con números de Padovan y potencias de primos
DOI:
https://doi.org/10.15446/recolma.v59n1.122855Palabras clave:
Padovan numbers, Linear form in logarithms, Reduction method (en)Números de Padovan, Formas lineales en logaritmos, método de reducción (es)
Descargas
We consider the Padovan sequence {Pn}n≥0, defined by P0 = 0, P1 = P2 = 1, with subsequent terms given by the recurrence relation Pn+3 = Pn+1 + Pn for all n ≥ 0. In this paper, we use the methods of Baker-Davenport. We demonstrate that the Diophantine equation Pn − pm = Pn1 − pm1 admits only finitely many non-negative integer solutions n, m, n1, m1, where p is a fixed prime number ≥ 5. Additionally, once the value of p is specified, these solutions can be obtained explicitly. We address the case where p = 5.
Consideramos la succession de Padovan {Pn}n≥0, definida inductivamente por P0 = 0, P1 = P2 = 1, y la relación de recurrencia Pn+3 = Pn+1 + Pn para n ≥ 0. Este artículo utiliza el método de Baker-Davenport. Probamos que la ecuación Diofantina Pn − pm = Pn1 − pm1 admite sólo finitas soluciones enteras positivas n, m, n1, m1, donde p es un número primo fijo ≥ 5. Más aún, una vez fijo el valor de p, las soluciones pueden ser listadas de manera explícita. Mostramos este proceso para el caso p = 5.
Referencias
[1] B. Alan and D. Harold, The equations 3x2 − 2 = y2 and 8x2 − 7 = z2, The Quarterly Journal of Mathematics 20 (1969), no. 1, 129-137.
[2] D. Andrej and P. Attila, A generalization of a theorem of Baker and Davenport, The Quarterly Journal of Mathematics 49 (1998), no. 195, 291-306.
[3] J. J. Bravo, L. Florian, and K. Yazán., On Pillai’s problem with Lucas numbers and powers of 3., Bulletin of the Korean Mathematical Society 54 (2017), 1069-1080.
[4] C. Kwok Chi, P. Istv´an, and Z. Volker, On a variant of pillai’s problem, Int. J. Number Theory 13 (2017), 1711-1727.
[5] C. Kwok Chi, P. Istv´an, and Z. Volker, On a variant of pillai’s problem II, Journal of number theory 183 (2018), 269-290.
[6] A. M. García and S. Hernández, Pillai’s problem with padovan numbers and powers of two, Revista Colombiana de Matemáticas (2019), 1-14.
[7] S. Hernández, L. Florian, and L. M. Rivera, On pillai’s problem with the fibonacci and pell sequences, Bolet´ın de la sociedad matemática Mexicana 25 (2019), 495-507.
[8] A. Herschfeld, The equation 2x − 3y = d, Bull. Amer. Math. Soc. 42 (1936), 231-234.
[9] D. Mahadi, On the problem of Pillai with Padovan numbers and powers of 3, Studia Scientiarum Mathematicarum Hungarica 56 (2019), 364-379.
[10] D. Mahadi, On a problem of Pillai with Fibonacci numbers and powers of 3, Boletín de la Sociedad Matemática Mexicana 26 (2020), no. 2, 263-277.
[11] D. Mahadi, L. Florian, and R. Mihaja, On a problem of Pillai with Fibonacci numbers and powers of 2, Proceedings-Mathematical Sciences 127 (2017), 411-421.
[12] D. Mahadi, C. Gómez, and L. Florian, On a problem of Pillai with k-generalized Fibonacci numbers and powers of 2, Monatshefte f¨ur Mathematik 187 (2018), 635-664.
[13] E. Matveev, An explicit lower bound for a homogeneous rational linear form in the logarithms of algebraic numbers. ii, Izvestiya: Mathematics 64 (2000), no. 6, 1217.
[14] S. S. Pillai, On ax − by = c, J. Indian Math. Soc.(NS) 2 (1936), 119-122.
[15] S. S. Pillai, A correction to the Paper” On ax − by = c, The Journal of the Indian Mathematical Society (1937), 215-215.
[16] S. S. Pillai, On the equation 2x − 3y = 2X + 3Y , Bull. Calcutta Math (1945), 15-20.
[17] R. Salah, K. Bir, and T. Alain, Padovan and Perrin numbers of the form xa ± xb + 1, Annales Mathematicae et Informaticae 55 (2022).
[18] S. Sanchez and L. Florian, Linear combinations of factorials and s-units in a binary recurrence sequence, Annales mathématiques du Québec 38 (2014), no. 2, 169-188.
[19] R. J. Stroeker and R. Tijdeman, Diophantine equations, Computational methods in number theory, Math. Centre Tracts (1982).
