Publicado

2025-09-19

Pillai’s Problem with Padovan Numbers and Prime Powers

El problema de Pillai con números de Padovan y potencias de primos

DOI:

https://doi.org/10.15446/recolma.v59n1.122855

Palabras clave:

Padovan numbers, Linear form in logarithms, Reduction method (en)
Números de Padovan, Formas lineales en logaritmos, método de reducción (es)

Descargas

Autores/as

  • Larhlid Abdelghani Sidi Mohamed Ben Abdallah University
  • Chillali Abdelhakim Sidi Mohamed Ben Abdellah University
  • El Habibi Abdelaziz Research Center of the School of Advanced Engineering Studies
  • M’Hammed Ziane Mohammed Premier University

We consider the Padovan sequence {Pn}n≥0, defined by P0 = 0, P1 = P2 = 1, with subsequent terms given by the recurrence relation Pn+3 = Pn+1 + Pn for all n ≥ 0. In this paper, we use the methods of Baker-Davenport. We demonstrate that the Diophantine equation Pn − pm = Pn1 − pm1 admits only finitely many non-negative integer solutions n, m, n1, m1, where p is a fixed prime number ≥ 5. Additionally, once the value of p is specified, these solutions can be obtained explicitly. We address the case where p = 5.

Consideramos la succession de Padovan {Pn}n≥0, definida inductivamente por P0 = 0, P1 = P2 = 1, y la relación de recurrencia Pn+3 = Pn+1 + Pn para n ≥ 0. Este artículo utiliza el método de Baker-Davenport. Probamos que la ecuación Diofantina Pn − pm = Pn1 − pm1 admite sólo finitas soluciones enteras positivas n, m, n1, m1, donde p es un número primo fijo ≥ 5. Más aún, una vez fijo el valor de p, las soluciones pueden ser listadas de manera explícita. Mostramos este proceso para el caso p = 5.

Referencias

[1] B. Alan and D. Harold, The equations 3x2 − 2 = y2 and 8x2 − 7 = z2, The Quarterly Journal of Mathematics 20 (1969), no. 1, 129-137.

[2] D. Andrej and P. Attila, A generalization of a theorem of Baker and Davenport, The Quarterly Journal of Mathematics 49 (1998), no. 195, 291-306.

[3] J. J. Bravo, L. Florian, and K. Yazán., On Pillai’s problem with Lucas numbers and powers of 3., Bulletin of the Korean Mathematical Society 54 (2017), 1069-1080.

[4] C. Kwok Chi, P. Istv´an, and Z. Volker, On a variant of pillai’s problem, Int. J. Number Theory 13 (2017), 1711-1727.

[5] C. Kwok Chi, P. Istv´an, and Z. Volker, On a variant of pillai’s problem II, Journal of number theory 183 (2018), 269-290.

[6] A. M. García and S. Hernández, Pillai’s problem with padovan numbers and powers of two, Revista Colombiana de Matemáticas (2019), 1-14.

[7] S. Hernández, L. Florian, and L. M. Rivera, On pillai’s problem with the fibonacci and pell sequences, Bolet´ın de la sociedad matemática Mexicana 25 (2019), 495-507.

[8] A. Herschfeld, The equation 2x − 3y = d, Bull. Amer. Math. Soc. 42 (1936), 231-234.

[9] D. Mahadi, On the problem of Pillai with Padovan numbers and powers of 3, Studia Scientiarum Mathematicarum Hungarica 56 (2019), 364-379.

[10] D. Mahadi, On a problem of Pillai with Fibonacci numbers and powers of 3, Boletín de la Sociedad Matemática Mexicana 26 (2020), no. 2, 263-277.

[11] D. Mahadi, L. Florian, and R. Mihaja, On a problem of Pillai with Fibonacci numbers and powers of 2, Proceedings-Mathematical Sciences 127 (2017), 411-421.

[12] D. Mahadi, C. Gómez, and L. Florian, On a problem of Pillai with k-generalized Fibonacci numbers and powers of 2, Monatshefte f¨ur Mathematik 187 (2018), 635-664.

[13] E. Matveev, An explicit lower bound for a homogeneous rational linear form in the logarithms of algebraic numbers. ii, Izvestiya: Mathematics 64 (2000), no. 6, 1217.

[14] S. S. Pillai, On ax − by = c, J. Indian Math. Soc.(NS) 2 (1936), 119-122.

[15] S. S. Pillai, A correction to the Paper” On ax − by = c, The Journal of the Indian Mathematical Society (1937), 215-215.

[16] S. S. Pillai, On the equation 2x − 3y = 2X + 3Y , Bull. Calcutta Math (1945), 15-20.

[17] R. Salah, K. Bir, and T. Alain, Padovan and Perrin numbers of the form xa ± xb + 1, Annales Mathematicae et Informaticae 55 (2022).

[18] S. Sanchez and L. Florian, Linear combinations of factorials and s-units in a binary recurrence sequence, Annales mathématiques du Québec 38 (2014), no. 2, 169-188.

[19] R. J. Stroeker and R. Tijdeman, Diophantine equations, Computational methods in number theory, Math. Centre Tracts (1982).

Cómo citar

APA

Abdelghani, L., Abdelhakim, C., Abdelaziz, E. H. & Ziane, M. (2025). Pillai’s Problem with Padovan Numbers and Prime Powers. Revista Colombiana de Matemáticas, 59(1), 61–77. https://doi.org/10.15446/recolma.v59n1.122855

ACM

[1]
Abdelghani, L., Abdelhakim, C., Abdelaziz, E.H. y Ziane, M. 2025. Pillai’s Problem with Padovan Numbers and Prime Powers. Revista Colombiana de Matemáticas. 59, 1 (sep. 2025), 61–77. DOI:https://doi.org/10.15446/recolma.v59n1.122855.

ACS

(1)
Abdelghani, L.; Abdelhakim, C.; Abdelaziz, E. H.; Ziane, M. Pillai’s Problem with Padovan Numbers and Prime Powers. rev.colomb.mat 2025, 59, 61-77.

ABNT

ABDELGHANI, L.; ABDELHAKIM, C.; ABDELAZIZ, E. H.; ZIANE, M. Pillai’s Problem with Padovan Numbers and Prime Powers. Revista Colombiana de Matemáticas, [S. l.], v. 59, n. 1, p. 61–77, 2025. DOI: 10.15446/recolma.v59n1.122855. Disponível em: https://revistas.unal.edu.co/index.php/recolma/article/view/122855. Acesso em: 22 ene. 2026.

Chicago

Abdelghani, Larhlid, Chillali Abdelhakim, El Habibi Abdelaziz, y M’Hammed Ziane. 2025. «Pillai’s Problem with Padovan Numbers and Prime Powers». Revista Colombiana De Matemáticas 59 (1):61-77. https://doi.org/10.15446/recolma.v59n1.122855.

Harvard

Abdelghani, L., Abdelhakim, C., Abdelaziz, E. H. y Ziane, M. (2025) «Pillai’s Problem with Padovan Numbers and Prime Powers», Revista Colombiana de Matemáticas, 59(1), pp. 61–77. doi: 10.15446/recolma.v59n1.122855.

IEEE

[1]
L. Abdelghani, C. Abdelhakim, E. H. Abdelaziz, y M. Ziane, «Pillai’s Problem with Padovan Numbers and Prime Powers», rev.colomb.mat, vol. 59, n.º 1, pp. 61–77, sep. 2025.

MLA

Abdelghani, L., C. Abdelhakim, E. H. Abdelaziz, y M. Ziane. «Pillai’s Problem with Padovan Numbers and Prime Powers». Revista Colombiana de Matemáticas, vol. 59, n.º 1, septiembre de 2025, pp. 61-77, doi:10.15446/recolma.v59n1.122855.

Turabian

Abdelghani, Larhlid, Chillali Abdelhakim, El Habibi Abdelaziz, y M’Hammed Ziane. «Pillai’s Problem with Padovan Numbers and Prime Powers». Revista Colombiana de Matemáticas 59, no. 1 (septiembre 19, 2025): 61–77. Accedido enero 22, 2026. https://revistas.unal.edu.co/index.php/recolma/article/view/122855.

Vancouver

1.
Abdelghani L, Abdelhakim C, Abdelaziz EH, Ziane M. Pillai’s Problem with Padovan Numbers and Prime Powers. rev.colomb.mat [Internet]. 19 de septiembre de 2025 [citado 22 de enero de 2026];59(1):61-77. Disponible en: https://revistas.unal.edu.co/index.php/recolma/article/view/122855

Descargar cita

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Visitas a la página del resumen del artículo

293

Descargas

Los datos de descargas todavía no están disponibles.