Publicado

2025-09-19

Entropy solutions for a class of doubly nonlinear parabolic systems involving measure data in non-reflexive Orlicz spaces

Soluciones de entropía para una clase no lineal de sistemas parabólicos que involucran conjuntos de datos medibles en espacios de Orlicz no reflexivos

DOI:

https://doi.org/10.15446/recolma.v59n1.122857

Palabras clave:

Parabolic systems, generalized growth, Orlicz-Sobolev spaces, Entropy solutions (en)
Sistemas parabólicos, crecimiento generalizado, espacios de Orlicz-Sobolev, soluciones de entropía (es)

Descargas

Autores/as

  • Jabir Ouazzani Chandi University Abdelmalek Essaadi
  • Mohamed Bourahma Sidi Mohamed Ben Abdellah University
  • Hassane Hjiaj University Abdelmalek Essaadi
  • Jaouad Bennouna Sidi Mohamed Ben Abdellah University
  • Abdelmoujib Benkirane Sidi Mohamed Ben Abdellah University

This paper deals with an existence result of entropy solutions for a nonlinear parabolic systems of the form

∂ui/∂t - div (a(x, t, ui, ∇ui) + Φi(x, t, ui)) = fi(x, u1, u2) - div(Fi) in QT
ui = 0  on Γ
ui(t = 0) = ui,0  in Ω,

where the lower order term Φ satisfies a growth condition prescribed by the Nfunction M defining the framework spaces (see section 2.1) and the right hand side is a measure datum. The main term which contains the space derivatives and a non-coercive lower order term are considered in divergence form satisfying only the original Orlicz growths. We don’t assume any restriction neither on M nor on its complementary M. Therefor, we work in a nonreflexive Orlicz spaces.

Este artículo se centra en probar la existencia de soluciones entrópicas para sistemas no lineales parabólicos de la forma

∂ui/∂t - div (a(x, t, ui, ∇ui) + Φi(x, t, ui)) = fi(x, u1, u2) - div(Fi) in QT
ui = 0  on Γ
ui(t = 0) = ui,0  in Ω,

donde el término Φ satisface una condición de crecimiento dada por la N-función M definida en los espacios descritos en la sección 2.1 y el lado derecho de la ecuación corresponde a las condiciones medibles asociadas al problema. El término principal que contiene los términos con derivadas espaciales y los términos no coercitivos de menor orden, que aparecen forma divergente, satisfacen las tasas de crecimiento de Orlicz. No vamos a suponer ninguna restricción sobre la función M o la función complementaria M. Por lo tanto, trabajaremos en espacios de Orlicz no reflexivos.

Referencias

[1] R. Adams, Sobolev spaces, Academic Press Inc, New York, 1975.

[2] Y. Ahmida, I. Chlebicka, P. Gwiazda, and A. Youssfi, Gossez’s approximation theorems in Musielak-Orlicz-Sobolev spaces, J. Funct. Anal., 2018, https://doi.org/10.1016/j.jfa.2018.05.015.

[3] M. Ben Cheikh Ali and O. Guib´e, Nonlinear and non-coercive elliptic problems with integrable data, (English summary). Adv. Math. Sci. Appl. 16 (2006), no. 1, 275-297.

[4] E. Azroul, H. Redwane, and M. Rhoudaf, Existence of solutions for nonlinear parabolic systems via weak convergence of truncations, Elec. J. of Diff. Equ. 2010 (2010), no. 68, 1-18.

[5] A. Eden, B. Michaux, and J. Rakotoson, Doubly Nonlinear Parabolic-Type Equations as Dynamical systems, Journal of Dynamics and Differential Equations 3 (1991), 87-131.

[6] A. Elmahi and D. Meskine, Strongly nonlinear parabolic equations with natural growth terms and L1 data in Orlicz spaces, Portugaliae Mathematica. Nova 62 (2005), 143-183.

[7] A. Elmahi and D. Meskine, Strongly nonlinear parabolic equations with natural growth terms in Orlicz spaces, Nonlinear Anal. Theory Methods Appl. 60 (2005), 1-35.

[8] J. P. Gossez, Nonlinear elliptic boundary value problems for equations with rapidly (or slowly) increasing coefficients, Trans. Amer. Math. soc. 190 (1974), 163-205.

[9] J. P. Gossez, Some approximation properties in Orlicz-Sobolev spaces, Stud. Math. 74 (1982), 17-24.

[10] J. P. Gossez and V. Mustonen, Variationnal inequalities in Orlicz-Sobolev spaces, Nonlinear Anal. 11 (1987), 317-492.

[11] A. EL Hachimi and H. EL Ouardi, Existence and regularity of a global attractor for doubly nonlinear parabolic equtions, Electron. J. Diff. Eqns. 45 (2002), 1-15.

[12] A. EL Hachimi and H. EL Ouardi, Attractors for a Class of Doubly Nonlinear Parabolic Systems, Electron. J. Diff. Eqns. 1 (2006), 1-15.

[13] M. Krasnosel’skii and Y. Rutikii, Convex functions and Orlicz spaces, Groningen, Nordhooff, 1969.

[14] M. Mabdaoui, H. Moussa, and M. Rhoudaf, Entropy solutions for a nonlinear parabolic problems with lower order term in Orlicz spaces, Anal.Math.Phys., 2016, DOI 10.1007/s13324-016-0129-5.

[15] M. Marion, Attractors for reaction-diffusion equation: existence of their dimension, Applicable Analysis 25 (1987), 101-147.

[16] H. Moussa and M. Rhoudaf, Existence of renormalized solution of nonlinear elliptic problems with lower order term in Orlicz spaces, Ricerche mat., 2017, DOI 10.1007/s11587-017-0322-3 249.

[17] R. Di Nardo, F. Feo, and O. Guibé, Existence result for nonlinear parabolic equations with lower order terms, Anal. Appl. (Singap.) 9 (2011), no. 2, 161-186.

[18] A. Porretta, Existence results for strongly nonlinear parabolic equations via strong convergence of truncations, Ann. Mat. Pura Appl. 177 (1999), no. IV, 143-172.

[19] H. Redwane, Existence of a solution for a class of nonlinear parabolic systems, Elect. J. Qual. Th. Diff. Equ. 24 (2007), 18pp.

[20] H. Redwane, Existence Results For a Class of Nonlinear Parabolic Equations in Orlicz Spaces, Electronic Journal of Qualitative Theory of Differential Equations 2 (2010), 1-19.

[21] J. Simon, Compact sets in Lp(0, T;B), Ann. Mat. Pura Appl. 146 (1987), 65-96.

Cómo citar

APA

Ouazzani Chandi, J., Bourahma, M., Hjiaj, H., Bennouna, J. & Benkirane, A. (2025). Entropy solutions for a class of doubly nonlinear parabolic systems involving measure data in non-reflexive Orlicz spaces. Revista Colombiana de Matemáticas, 59(1), 89–116. https://doi.org/10.15446/recolma.v59n1.122857

ACM

[1]
Ouazzani Chandi, J., Bourahma, M., Hjiaj, H., Bennouna, J. y Benkirane, A. 2025. Entropy solutions for a class of doubly nonlinear parabolic systems involving measure data in non-reflexive Orlicz spaces. Revista Colombiana de Matemáticas. 59, 1 (sep. 2025), 89–116. DOI:https://doi.org/10.15446/recolma.v59n1.122857.

ACS

(1)
Ouazzani Chandi, J.; Bourahma, M.; Hjiaj, H.; Bennouna, J.; Benkirane, A. Entropy solutions for a class of doubly nonlinear parabolic systems involving measure data in non-reflexive Orlicz spaces. rev.colomb.mat 2025, 59, 89-116.

ABNT

OUAZZANI CHANDI, J.; BOURAHMA, M.; HJIAJ, H.; BENNOUNA, J.; BENKIRANE, A. Entropy solutions for a class of doubly nonlinear parabolic systems involving measure data in non-reflexive Orlicz spaces. Revista Colombiana de Matemáticas, [S. l.], v. 59, n. 1, p. 89–116, 2025. DOI: 10.15446/recolma.v59n1.122857. Disponível em: https://revistas.unal.edu.co/index.php/recolma/article/view/122857. Acesso em: 22 ene. 2026.

Chicago

Ouazzani Chandi, Jabir, Mohamed Bourahma, Hassane Hjiaj, Jaouad Bennouna, y Abdelmoujib Benkirane. 2025. «Entropy solutions for a class of doubly nonlinear parabolic systems involving measure data in non-reflexive Orlicz spaces». Revista Colombiana De Matemáticas 59 (1):89-116. https://doi.org/10.15446/recolma.v59n1.122857.

Harvard

Ouazzani Chandi, J., Bourahma, M., Hjiaj, H., Bennouna, J. y Benkirane, A. (2025) «Entropy solutions for a class of doubly nonlinear parabolic systems involving measure data in non-reflexive Orlicz spaces», Revista Colombiana de Matemáticas, 59(1), pp. 89–116. doi: 10.15446/recolma.v59n1.122857.

IEEE

[1]
J. Ouazzani Chandi, M. Bourahma, H. Hjiaj, J. Bennouna, y A. Benkirane, «Entropy solutions for a class of doubly nonlinear parabolic systems involving measure data in non-reflexive Orlicz spaces», rev.colomb.mat, vol. 59, n.º 1, pp. 89–116, sep. 2025.

MLA

Ouazzani Chandi, J., M. Bourahma, H. Hjiaj, J. Bennouna, y A. Benkirane. «Entropy solutions for a class of doubly nonlinear parabolic systems involving measure data in non-reflexive Orlicz spaces». Revista Colombiana de Matemáticas, vol. 59, n.º 1, septiembre de 2025, pp. 89-116, doi:10.15446/recolma.v59n1.122857.

Turabian

Ouazzani Chandi, Jabir, Mohamed Bourahma, Hassane Hjiaj, Jaouad Bennouna, y Abdelmoujib Benkirane. «Entropy solutions for a class of doubly nonlinear parabolic systems involving measure data in non-reflexive Orlicz spaces». Revista Colombiana de Matemáticas 59, no. 1 (septiembre 19, 2025): 89–116. Accedido enero 22, 2026. https://revistas.unal.edu.co/index.php/recolma/article/view/122857.

Vancouver

1.
Ouazzani Chandi J, Bourahma M, Hjiaj H, Bennouna J, Benkirane A. Entropy solutions for a class of doubly nonlinear parabolic systems involving measure data in non-reflexive Orlicz spaces. rev.colomb.mat [Internet]. 19 de septiembre de 2025 [citado 22 de enero de 2026];59(1):89-116. Disponible en: https://revistas.unal.edu.co/index.php/recolma/article/view/122857

Descargar cita

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Visitas a la página del resumen del artículo

247

Descargas

Los datos de descargas todavía no están disponibles.