Publicado
k-Pell numbers written as a product of two Narayana numbers
Números de Pell de tipo k que se representan como producto de dos números de Narayana
DOI:
https://doi.org/10.15446/recolma.v59n1.122859Palabras clave:
k-Pell numbers, Narayana’s cows sequence, linear forms in logarithms, reduction method (en)Números de Pell, sucesión de Narayana, formas lineares en logaritmos, método de reducción (es)
Descargas
For an integer k ≥ 2, let {P(k)n}n be the k-generalized Pell sequence which starts with 0, . . . , 0, 1(k terms) and each term afterwards is the sum of k preceding terms. The purpose of this paper is to determine all k-Pell numbers, which are the product of two of Narayana’s numbers. More precisely, we study the Diophantine equation
P(k)n = Nm Nl
in positive integers (n, k, m, l) with k ≥ 2, where {Nm}m is the Narayana’s cows sequence.
Para cada entero k ≥ 2, sea {P(k)n}n la k-sucesión de Pell que comienza en 0, . . . , 0, 1(los primeros k términos) y los términos siguientes se calculan como la suma de los k términos anteriores. El objetivo de este artículo es determinar cuáles números de la k-sucesión de Pell se pueden escribir como el producto de dos números de Narayana. De forma más precisa, estudiamos la ecuación Diofantina
P(k)n = Nm Nl
para enteros (n, k, m, l) con k ≥ 2, donde {Nm}m es la sucesión de Narayana.
Referencias
[1] K. N. Adédji, M. Bachabi, and A. Togbé, On k-pell numbers which are sum of two narayana’s cows numbers, Math. Bohem. 150 (2025), no. 1, 25-47.
[2] K. N. Adédji, J. Odjoumani, and A. Togbé, Padovan and Perrin numbers as products of two generalized Lucas numbers, Arch. Math. 59 (2023), no. 4, 315-337.
[3] M. Alan and K. S. Alan, Mersenne numbers which are products of two Pell numbers, Bol. Soc. Mat. Mex. 28 (2022), Article 38.
[4] A. Baker and H. Davenport, The equations 3x2 - 2 = y2 and 8x2 - 7 = z2, Q. J. Math. Oxf. Ser. 20 (1969), no. 2, 129-137.
[5] J. J. Bravo, P. Das, and S. Guzman, Repdigits in Narayana’s cows sequence and their consequences, J. Integer Seq. 23 (2020), Article 20.8.7.
[6] J. J. Bravo and J. L. Herrera, Repdigits in generalized Pell sequences, Arch. Math. (Brno) 56 (2020), 249-262.
[7] J. J. Bravo, J. L. Herrera, and F. Luca, On a generalization of the Pell sequence, Math. Bohem. 146 (2021), no. 2, 199-213.
[8] Y. Bugeaud, M. Mignotte, and S. Siksek, Classical and modular approaches to exponential Diophantine equations. I. Fibonacci and Lucas perfect powers, Ann. of Math. 163 (2006), no. 3, 969-1018.
[9] Z. S¸iar, Lucas numbers which are products of two balancing numbers, Notes from the International Autumn School on Computational Number Theory, 355-363, Tutor. Sch. Workshops Math. Sci., Birkhäuser/Springer, Cham (2019).
[10] M. Ddamulira, F. Luca, and M. Rakotomalala, Fibonacci numbers which are products of two Pell numbers, Fibonacci Quart. 54 (2016), no. 1, 11-18.
[11] B. M. M. deWeger, Algorithms for Diophantine equations, Stichting Mathematisch Centrum (1989).
[12] A. Dujella and A. Pethö, A generalization of a theorem of Baker and Davenport, Q. J. Math. Oxf. Ser. (2) 49 (1998), no. 195, 291-306.
[13] F. Erduvan and R. Keskin, Fibonacci numbers which are products of two Jacobsthal numbers, Tbilisi Math. 14 (2021), no. 2, 105-116.
[14] F. Erduvan and R. Keskin, Fibonacci numbers which are products of two Jacobsthal-Lucas numbers, Appl. Math. E-Notes 23 (2023), 60-70.
[15] E. Kilic, On the usual Fibonacci and generalized order-k Pell numbers, Ars Combin. 109 (2013), 391-403.
[16] E. M. Matveev, An explicit lower bound for a homogeneous rational linear form in the logarithms of algebraic numbers, II, Izv. Ross. Akad. Nauk Ser. Mat. 64 (2023), no. 6, 125-180.
[17] S. Nikiema and J. Odjoumani, Lucas generalized numbers in Narayana’s cows sequence, Gulf J. Math. 15 (2023), no. 1, 84-92.
[18] S. E. Rihane, On k-Fibonacci and k-Lucas numbers written as a product of two Pell numbers, Bol. Soc. Mat. Mex. 30 (2024), Article 20.
[19] S. E. Rihane, On k-Fibonacci numbers expressible as product of two balancing or Lucas-balancing numbers, Indian J. Pure Appl. Math. 45 (2025), 339-356.
[20] S. G. Sanchez and F. Luca, Linear combinations of factorials and S-units in a binary recurrence sequence, Ann. Math. du Que. 38 (2014), 169-188.
[21] B. P. Tripathy and B. K. Patel, On k-Fibonacci and k-Lucas numbers as product of two Narayana’s cows numbers, (Preprint).
[22] B. P. Tripathy and B. K. Patel, Common terms of generalized Pell and Narayana’s cows sequences, arXiv:2307.03919 (2023).
