Publicado

2025-09-19

k-Pell numbers written as a product of two Narayana numbers

Números de Pell de tipo k que se representan como producto de dos números de Narayana

DOI:

https://doi.org/10.15446/recolma.v59n1.122859

Palabras clave:

k-Pell numbers, Narayana’s cows sequence, linear forms in logarithms, reduction method (en)
Números de Pell, sucesión de Narayana, formas lineares en logaritmos, método de reducción (es)

Descargas

Autores/as

  • Bibhu Prasad Tripathy KIIT University
  • Bijan Kumar Patel Sambalpur University

For an integer k ≥ 2, let {P(k)n}n be the k-generalized Pell sequence which starts with 0, . . . , 0, 1(k terms) and each term afterwards is the sum of k preceding terms. The purpose of this paper is to determine all k-Pell numbers, which are the product of two of Narayana’s numbers. More precisely, we study the Diophantine equation

P(k)n = Nm Nl

in positive integers (n, k, m, l) with k ≥ 2, where {Nm}m is the Narayana’s cows sequence.

Para cada entero k ≥ 2, sea {P(k)n}n la k-sucesión de Pell que comienza en 0, . . . , 0, 1(los primeros k términos) y los términos siguientes se calculan como la suma de los k términos anteriores. El objetivo de este artículo es determinar cuáles números de la k-sucesión de Pell se pueden escribir como el producto de dos números de Narayana. De forma más precisa, estudiamos la ecuación Diofantina

P(k)n = Nm Nl

para enteros (n, k, m, l) con k ≥ 2, donde {Nm}m es la sucesión de Narayana.

Referencias

[1] K. N. Adédji, M. Bachabi, and A. Togbé, On k-pell numbers which are sum of two narayana’s cows numbers, Math. Bohem. 150 (2025), no. 1, 25-47.

[2] K. N. Adédji, J. Odjoumani, and A. Togbé, Padovan and Perrin numbers as products of two generalized Lucas numbers, Arch. Math. 59 (2023), no. 4, 315-337.

[3] M. Alan and K. S. Alan, Mersenne numbers which are products of two Pell numbers, Bol. Soc. Mat. Mex. 28 (2022), Article 38.

[4] A. Baker and H. Davenport, The equations 3x2 - 2 = y2 and 8x2 - 7 = z2, Q. J. Math. Oxf. Ser. 20 (1969), no. 2, 129-137.

[5] J. J. Bravo, P. Das, and S. Guzman, Repdigits in Narayana’s cows sequence and their consequences, J. Integer Seq. 23 (2020), Article 20.8.7.

[6] J. J. Bravo and J. L. Herrera, Repdigits in generalized Pell sequences, Arch. Math. (Brno) 56 (2020), 249-262.

[7] J. J. Bravo, J. L. Herrera, and F. Luca, On a generalization of the Pell sequence, Math. Bohem. 146 (2021), no. 2, 199-213.

[8] Y. Bugeaud, M. Mignotte, and S. Siksek, Classical and modular approaches to exponential Diophantine equations. I. Fibonacci and Lucas perfect powers, Ann. of Math. 163 (2006), no. 3, 969-1018.

[9] Z. S¸iar, Lucas numbers which are products of two balancing numbers, Notes from the International Autumn School on Computational Number Theory, 355-363, Tutor. Sch. Workshops Math. Sci., Birkhäuser/Springer, Cham (2019).

[10] M. Ddamulira, F. Luca, and M. Rakotomalala, Fibonacci numbers which are products of two Pell numbers, Fibonacci Quart. 54 (2016), no. 1, 11-18.

[11] B. M. M. deWeger, Algorithms for Diophantine equations, Stichting Mathematisch Centrum (1989).

[12] A. Dujella and A. Pethö, A generalization of a theorem of Baker and Davenport, Q. J. Math. Oxf. Ser. (2) 49 (1998), no. 195, 291-306.

[13] F. Erduvan and R. Keskin, Fibonacci numbers which are products of two Jacobsthal numbers, Tbilisi Math. 14 (2021), no. 2, 105-116.

[14] F. Erduvan and R. Keskin, Fibonacci numbers which are products of two Jacobsthal-Lucas numbers, Appl. Math. E-Notes 23 (2023), 60-70.

[15] E. Kilic, On the usual Fibonacci and generalized order-k Pell numbers, Ars Combin. 109 (2013), 391-403.

[16] E. M. Matveev, An explicit lower bound for a homogeneous rational linear form in the logarithms of algebraic numbers, II, Izv. Ross. Akad. Nauk Ser. Mat. 64 (2023), no. 6, 125-180.

[17] S. Nikiema and J. Odjoumani, Lucas generalized numbers in Narayana’s cows sequence, Gulf J. Math. 15 (2023), no. 1, 84-92.

[18] S. E. Rihane, On k-Fibonacci and k-Lucas numbers written as a product of two Pell numbers, Bol. Soc. Mat. Mex. 30 (2024), Article 20.

[19] S. E. Rihane, On k-Fibonacci numbers expressible as product of two balancing or Lucas-balancing numbers, Indian J. Pure Appl. Math. 45 (2025), 339-356.

[20] S. G. Sanchez and F. Luca, Linear combinations of factorials and S-units in a binary recurrence sequence, Ann. Math. du Que. 38 (2014), 169-188.

[21] B. P. Tripathy and B. K. Patel, On k-Fibonacci and k-Lucas numbers as product of two Narayana’s cows numbers, (Preprint).

[22] B. P. Tripathy and B. K. Patel, Common terms of generalized Pell and Narayana’s cows sequences, arXiv:2307.03919 (2023).

Cómo citar

APA

Prasad Tripathy, B. & Kumar Patel, B. (2025). k-Pell numbers written as a product of two Narayana numbers. Revista Colombiana de Matemáticas, 59(1), 117–135. https://doi.org/10.15446/recolma.v59n1.122859

ACM

[1]
Prasad Tripathy, B. y Kumar Patel, B. 2025. k-Pell numbers written as a product of two Narayana numbers. Revista Colombiana de Matemáticas. 59, 1 (sep. 2025), 117–135. DOI:https://doi.org/10.15446/recolma.v59n1.122859.

ACS

(1)
Prasad Tripathy, B.; Kumar Patel, B. k-Pell numbers written as a product of two Narayana numbers. rev.colomb.mat 2025, 59, 117-135.

ABNT

PRASAD TRIPATHY, B.; KUMAR PATEL, B. k-Pell numbers written as a product of two Narayana numbers. Revista Colombiana de Matemáticas, [S. l.], v. 59, n. 1, p. 117–135, 2025. DOI: 10.15446/recolma.v59n1.122859. Disponível em: https://revistas.unal.edu.co/index.php/recolma/article/view/122859. Acesso em: 22 ene. 2026.

Chicago

Prasad Tripathy, Bibhu, y Bijan Kumar Patel. 2025. «k-Pell numbers written as a product of two Narayana numbers». Revista Colombiana De Matemáticas 59 (1):117-35. https://doi.org/10.15446/recolma.v59n1.122859.

Harvard

Prasad Tripathy, B. y Kumar Patel, B. (2025) «k-Pell numbers written as a product of two Narayana numbers», Revista Colombiana de Matemáticas, 59(1), pp. 117–135. doi: 10.15446/recolma.v59n1.122859.

IEEE

[1]
B. Prasad Tripathy y B. Kumar Patel, «k-Pell numbers written as a product of two Narayana numbers», rev.colomb.mat, vol. 59, n.º 1, pp. 117–135, sep. 2025.

MLA

Prasad Tripathy, B., y B. Kumar Patel. «k-Pell numbers written as a product of two Narayana numbers». Revista Colombiana de Matemáticas, vol. 59, n.º 1, septiembre de 2025, pp. 117-35, doi:10.15446/recolma.v59n1.122859.

Turabian

Prasad Tripathy, Bibhu, y Bijan Kumar Patel. «k-Pell numbers written as a product of two Narayana numbers». Revista Colombiana de Matemáticas 59, no. 1 (septiembre 19, 2025): 117–135. Accedido enero 22, 2026. https://revistas.unal.edu.co/index.php/recolma/article/view/122859.

Vancouver

1.
Prasad Tripathy B, Kumar Patel B. k-Pell numbers written as a product of two Narayana numbers. rev.colomb.mat [Internet]. 19 de septiembre de 2025 [citado 22 de enero de 2026];59(1):117-35. Disponible en: https://revistas.unal.edu.co/index.php/recolma/article/view/122859

Descargar cita

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Visitas a la página del resumen del artículo

246

Descargas

Los datos de descargas todavía no están disponibles.