Oh the maximality of Sp(L) in Spn(k)
Palabras clave:
Quotient field, dedekind domain, symplectic group, finite index, finitely (es)
Descargas
Let k be the quotient field of a Dedekind domain O, (k ≠ 0) and let G = Spn(k) be the Symplectic Group over k. G acts on the 2n -dimensional vector space V.
Let L be a lattice in V, and let Sp(L) be the stabilizer of L in Spn(k). Our
purpose is to investigate whether or not there exists a subgroup of Spn(k) which contains Sp(L) as a subgroup of finite index. Although in several points we need only weaker assumptions, to describe our methods we shall assume that all residue class fields of k are finite. First of all we would like to point out th at the 0- module A(Sp(L),O) generated by Sp(L) in Mn(k). is an order, i.e., it is a subring which is a finitely generated 0-module and generates Mn(k) over k.
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Visitas a la página del resumen del artículo
Descargas
Licencia
Derechos de autor 1970 Revista Colombiana de Matemáticas
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.