Applications of a max-min principle
Palabras clave:
espacio de Hilbert, hipótesis, sistemas de ecuaciones ordinarias, problema de Neumann no lineal (es)Descargas
Sean H un espacio de Hilbert y X,Y das sub espacios cerrados que satisfacen: dim X < ∞ a: y H Θ Y. En [6J se demostró que si f es un funcional de C2 definido en H, tal que para cada u ε H,D2f(u) es acotado superiormente en X por una constante negativa y acotado inferiormente por una contante positiva en Y entonces f tiene un único punta crítico. Aquí notaremos que aún existe un punta critico cuando la hipótesis sobre el comportamiento de D2f(u) en X se reemplazo por una condición sobre el crecimiento de fen X. Este resultado se aplica, en los teoremas 2 y 3, a 10 existencia de soluciones periódicas de sistemas de ecuaciones ordinarias y a un problema de Neumann no lineal.
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Visitas a la página del resumen del artículo
Descargas
Licencia
Derechos de autor 1976 Revista Colombiana de Matemáticas
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.