Publicado
Subanillos reticulados convexos de f-anillos von Neumann regulares
Convex Lattice-Ordered Subrings of von Neumann Regular f-Rings
DOI:
https://doi.org/10.15446/recolma.v49n1.54177Palabras clave:
Anillo reticulado, f-anillo proyectable, anillo von Neumann regular, Subanillo convexo, Primera propiedad de convexidad, Anillo real cerrado, Anillo de cocientes, Anillo de valuación (es)Lattice-ordered ring, Projectable f-ring, von Neumann regular ring, Convex subring, First convexity property, Real closed ring, Ring of quotients, Valuation ring (en)
de los f-anillos von Neumann regulares. Estos son los f-anillos reducidos,
proyectables y que satisfacen la propiedad de convexidad, i.e.: para todo a, b,
si 0 < a < b entonces b divide a. Tambien se da una version real cerrada de
este resultado.
convex subrings of von Neumann regular f-rings. They turn out to be the
reduced projectable f-rings satisfying the convexity property, i.e.: for all a, b,
if 0 < a < b then b divides a. A real closed version of this result can also be
stated.
1Universidad de Costa Rica, San José, Costa Rica. Email: jorge.guier@ucr.ac.cr
The purpose of this paper is to characterize the lattice-ordered convex subrings of von Neumann regular f-rings. They turn out to be the reduced projectable f-rings satisfying the convexity property, i.e.: for all a, b, if 0 < a < b then b divides a. A real closed version of this result can also be stated.
Key words: Lattice-ordered ring, projectable f-ring, von Neumann regular ring, convex subring, first convexity property, real closed ring, ring of quotients, valuation ring.
2000 Mathematics Subject Classification: 13J25, 06E20.
El propósito de este artículo es caracterizar los subanillos convexos de los f-anillos von Neumann regulares. Estos son los f-anillos reducidos, proyectables y que satisfacen la propiedad de convexidad, i.e.: para todo a, b, si 0 < a < b entonces b divide a. También se da una versión real cerrada de este resultado.
Palabras clave: Anillo reticulado, f-anillo proyectable, anillo von Neumann regular, subanillo convexo, primera propiedad de convexidad, anillo real cerrado, anillo de cocientes, anillo de valuación.
Texto completo disponible en PDF
References
[1] M. F. Atiyah and I. G. MacDonald, Introduction to Commutative Algebra, Addison-Wesley, Reading, 1969.
[2] A. Bigard, K. Keimel, and S. Wolfenstein, Groupes et anneaux réticulés, `Lectures Notes in Mathematics´, (1977), Vol. 608, Springer, Berlin, Germany.
[3] S. Burris and H. P. Sankappanavar, A Course in Universal Algebra, Springer, Berlin, Germany, 1981.
[4] S. Burris and H. Werner, `Sheaf Constructions and Their Elementary Properties´, Trans. Amer. Math. Soc. 248, (1979), 269-309.
[5] G. Cherlin and M. A. Dickmann, `Real Closed Rings II. Model Theory´, Ann. Pure Appl. Logic 25, (1983), 213-231.
[6] M. A. Dickmann, `Elimination of Quantifiers for Ordered Valuation Rings´, J. Symbolic Logic 52, (1987), 116-128.
[7] J. I. Guier, `Boolean Products of Real Closed Rings and Fields´, Ann. Pure Appl. Logic 112, (2001), 119-150.
[8] K. Keimel, The Representation of Lattice-Ordered Groups and Rings by Sections of Sheaves, `Lectures Notes in Mathematics´, (1971), Vol. 248, Springer, Berlin, Germany, p. 1-98.
[9] M. Knebusch, `Positivity and Convexity in Rings of Fractions´, Positivity 11, (2007), 639-686.
[10] J. Lambek, Lectures on Rings and Modules, Chelsea, New York, USA, 1976.
[11] S. Larson, `Convexity Conditions on f-Rings´, Canad. J. Math. 38, (1986), 48-64.
[12] J. Martínez, `The Maximal Ring of Quotient f-Ring´, Algebra Universalis 33, (1995), 355-369.
[13] N. Schwartz, Real Closed Rings - Examples and Applications, `Séminaire de Structures Algébriques Ordonnées´, 1997, Vol. 61, 1995-96 (Delon, Dickmann, Gondard eds), Paris VII-CNRS Logique, Prépublications, Paris, France.
[14] N. Schwartz, `Epimorphic Extensions and Prüfer Extensions of Partially Ordered Rings´, Manuscripta Math. 102, (2000), 347-381.
[15] N. Schwartz, `Convex Subrings of Partially Ordered Rings´, Math. Nachr. 283, (2010), 758-774.
Este artículo se puede citar en LaTeX utilizando la siguiente referencia bibliográfica de BibTeX:
@ARTICLE{RCMv49n1a08,
AUTHOR = {Guier, Jorge I.},
TITLE = {{Convex Lattice-Ordered Subrings of von Neumann Regular \boldsymbol{f}-Rings}},
JOURNAL = {Revista Colombiana de Matemáticas},
YEAR = {2015},
volume = {49},
number = {1},
pages = {161--170}
}
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
CrossRef Cited-by
1. Jorge I. Guier. (2025). Elimination of quantifiers for a theory of real closed rings. Annals of Pure and Applied Logic, 176(1), p.103494. https://doi.org/10.1016/j.apal.2024.103494.
Dimensions
PlumX
Visitas a la página del resumen del artículo
Descargas
Licencia
Derechos de autor 2015 Revista Colombiana de Matemáticas
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.