Publicado
On the limit cycles of quasihomogeneous polynomial systems
DOI:
https://doi.org/10.15446/recolma.v49n2.60443Palabras clave:
Integrating factors, Inverse integrating factors, Limit cycles, p - q-quasi-homogeneous systems (en)Descargas
In this work, the nonexistence of limit cycles for classes of p - q-quasi-homogeneous polynomial planar systems of weighted degree l is established. Furthermore, we rule out the existence of limits cycles for certain perturbations of such planar systems. We present applications and examples in order to illustrate our results.
DOI: https://doi.org/10.15446/recolma.v49n2.60443
On the limit cycles of quasihomogeneous polynomial systems
Sobre los ciclos límite de sistemas polinomiales cuasi-homogeneos
L. Rocío González-Ramírez1,2, Osvaldo Osuna1,*, Rubén Santaella-Forero1
1 Universidad Michoacana de San Nicolás de Hidalgo, Morelia, México
e-mail: rgonzalez@ifm.umich.mx
e-mail: osvaldo@ifm.umich.mx
2 Catedrática CONACYT, D.F., México
e-mail: rusanfo@matmor.unam.mx
Abstract
In this work, the nonexistence of limit cycles for classes of p − q quasi-homogeneous polynomial planar systems of weighted degree l is established. Furthermore, we rule out the existence of limits cycles for certain perturbations of such planar systems. We present applications and examples in order to illustrate our results.
Key words and phrases. Integrating factors, Inverse integrating factors, Limit cycles, p − q-quasi-homogeneous systems.
2010 Mathematics Subject Classification. 34C05, 34C07, 34C25.
Resumen
En este trabajo, se establece la no existencia de ciclos límite para la clase de sistemas bidimensionales, polinomiales p − q-cuasi-homogeneos de grado ponderado l. Además, se descarta la existencia de ciclos límite para ciertas perturbaciones de tales sistemas. Finalmente, se presentan aplicaciones y ejemplos para ilustrar los resultados obtenidos.
Palabras y frases clave. Factores Integrantes, Factores integrantes inversos, ciclos límite, sistemas p − q-cuasi-homogeneos.
Texto completo disponible en PDF
References
[1] Giacomini H. Berrone L., On the vanishing set of inverse integrating factors, Qual. Theory Dyn. Syst. 1 (2000), 211-213.
[2] Murray J. D., Mathematical Biology I: An Introduction, Springer-Verlag, 2004.
[3] García B. Llibre J. Pérez del Río J., Planar quasi-homogeneous polynomial differential systems and their integrability, Journal of Differential Equations 255 (2013), no. 16, 3185-3204.
[4] Chavarriga J. García I., Lie symmetries of quasihomogeneous polynomial planar vector fields and certain perturbations, Acta Math. Sinica 21 (2005), no. 1, 185-192.
[5] Chavarriga J. Giacomini H. Giné J. Llibre J., Darboux integrability and the inverse integrating factor, J. Diff. Equations 194 (2003), 116-139.
[6] Chavarriga J. Giné J., Integrable systems via inverse integrating factor, Extracta Math. 13 (1998), 41-60.
[7] García I. Grau M., A survey on the inverse integrating factor, Qual. Theory Dyn. Syst. 9 (2010), no. 1-2, 115-166.
[8] Giacomini H. Llibre J. Viano M., On the nonexistence, existence and uniqueness of limit cycles, Nonlinearity 9 (1996), no. 1, 501-516.
[9] Fulton W., Algebraic curves: An introduction to algebraic geometric, Addison-Wesley, 1989.
(Recibido en marzo de 2015. Aceptado en octubre de 2015)
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Licencia
Derechos de autor 2015 Revista Colombiana de Matemáticas
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.