Publicado
Morfismos de Abel, series lineales y sus límites sobre curvas
Abel maps, linear series and their limits on curves
DOI:
https://doi.org/10.15446/recolma.v51n2.70895Palabras clave:
Series lineales, morfismos de Abel, series lineales límite, espacios moduli (es)Linear series, Abel maps, limit linear series, moduli spaces (en)
Descargas
Referencias
C. Aholt, B. Sturmfels, and R. Thomas, A Hilbert Scheme in computer vision, Canad. J. Math 65 (2013), no. 5, 961-988.
O. Amini and M. Baker, Linear series on metrized complexes of algebraic curves, Mathematische Annalen 362 (2015), no. 1, 55-106.
E. Arbarello, M. Cornalba, and P. Griffiths, Geometry of algebraic curves, vol.2, vol. 268, Grundlehren der Mathematischen Wissenchaften, Springer-Verlag, New York, 2011.
E. Arbarello, M. Cornalba, P. Griffiths, and J. Harris, Geometry of algebraic curves, vol.1, vol. 267, Grundlehren der Mathematischen Wissenchaften, Springer-Verlag, New York, 1985.
E. Brugalle and et al., Brief introduction to tropical geometry, vol. 1, Proceedings of 21st Gokova Geometry-Topology Conference. OpenLibra, Gokova, 2015.
D. Cartwright and et al., Mustan varieties, Selecta Math. 17 (2011), no. 4, 757-793.
M. Chan, Lectures on tropical curves and their moduli space, vol. S/N, Electronic Notes of the School of Moduli of Curves, CIMAT. Guanajuato-Mexico, 2016.
J. Coelho and M. Pacini, Abel maps for curves of compact type, J. of Pure and Applied Algebra. 214 (2010), no. 8, 1319-1333.
C. Cumino, E. Esteves, and L. Gatto, Limits of special Weierstrass points, Int. Math. Res. Papers 2008 (2008), no. 1, 1-65.
J. Dieudonne, The historical development of algebraic geometry, The American Mathematical Monthly 79 (1972), no. 8, 827-866.
D. Eisenbud and J. Harris, Existence, decomposition and limits of certain Weierstrass points, Invent. Math. 87 (1982), no. 1, 495-515.
D. Eisenbud and J. Harris, On the Kodaira dimension of the moduli space of curves, Invent. Math. 67 (1982), no. 1, 23-86.
D. Eisenbud and J. Harris, A simpler proof of the Gieseker-Petri theorem on special divisors, Invent. Math. 74 (1983), no. 2, 269-280.
D. Eisenbud and J. Harris, Limit linear series: Basic theory, Invent. Math. 85 (1986), no. 1, 337-371.
E. Esteves, Compactifiying the relative Jacobian over families of reduced curves, Transactions of AMS 353 (2001), no. 8, 3045-3095.
E. Esteves, Limit linear series: Perspectives from a work in progress, http://www.birs.ca/workshops/2014/14w5133/Programme14w5133.pdf (2014).
E. Esteves, Limit linear series: a new perspective, www.impa.br/opencms/pt/eventos/extra/2015elga (2015).
E. Esteves and N. Medeiros, Limit canonical systems on curves with two components, Invent. Math. 149 (2002), no. 1, 267-338.
E. Esteves and G. Munoz, Limit linear series for curves of compact type with three irreducible components, Preprint. arXiv:1704.02543 (2017).
E. Esteves, A. Nigro, and P. Rizzo, Stable limit linear series on singular curves, In preparation.
E. Esteves, A. Nigro, and Pedro Rizzo, Level-delta limit linear series, Preprint. arXiv:1606.04281 (2016), no. to appear in Mathematische Nachrichten.
E. Esteves and B. Osserman, Abel maps and limit linear series, Rend. Circ. Mat. Palermo 62 (2013), no. 1, 79-95.
B. Fantechi and et al., Fundamental Algebraic Geometry: Gronthendieck's FGA explained, vol. 123, Mathematical surveys and Monographs, AMS., New York, 2005.
G. Farkas, Brill{Noether with ramification at unassigned points, Journal in Pure and Applied Algebra 217 (2013), no. 10, 1838-1843.
G. Farkas and et al., Explicit Brill-Noether-Petri general curves, Preprint. arXiv:1511.07321 (2016).
D. Gieseker, Stable curves and special divisors, Invent. Math. 66 (1982), 251-275.
P. Griffiths, Introduction to algebraic curves, Translations of mathematical monographs, AMS., Providence, Rhode Island, 1989.
P. Griffiths and J. Harris, On the variety of special linear series on a general algebraic curve, Duke Math. J. 47 (1980), 233-272.
P. Griffiths and J. Harris, Principles of Algebraic Geometry, John Wiley and sons, Inc., New York, 1994.
J. Harris, Brill-Noether theory, Surveys in Differential Geometry 14 (2009), 131-143.
J. Harris and I. Morrison, Moduli of curves, vol. 187, Graduate Text in Mathematics. Springer-Verlag., New York, 1998.
R. Hartshorne, Algebraic geometry, vol. 52, Graduate Text in Mathematics. Springer-verlag., New York, 1977.
G. Kempf, Schubert methods with an application to algebraic curves, Publ. Math. Centrum., Amsterdam, 1971.
S. Kleiman and S. Laksov, On the existence of special divisors, Amer. J. Math. 94 (1972), 431-436.
S. Kleiman and S. Laksov, Another proof of the existence of special divisors, Acta Math. 132 (1974), 163-176.
R. Lazarsfeld, Brill-Noether-Petri without degenerations, J.Diff. Geom. 23 (1986), no. 3, 299-307.
B. Li, Images of rational maps of projective spaces, Preprint. arXiv:1310.8453v1 (2013).
D. Maclagan and B. Sturmfels, Introduction to Tropical Geometry, vol. 161, Graduate Studies in Mathematics, Springer-Verlag., New York, 2015.
G. Mikhalkin, Tropical geometry and its applications, Proceedings of the International Congress of Mathematicians, Madrid, Spain., 2006.
J. Morton, Relations among conditional probabilities, J. Symbolic Comput. 50 (2013), 478-492.
A. Ortega, The Brill-Noether curve and Prym-Tyurin varieties, Mathematische Annalen 356 (2013), no. 3, 809-817.
B. Osserman, A limit linear series moduli scheme, Annales de l'Institut Fourier. 56 (2006), no. 4, 1165-1205.
B. Osserman, Limit linear series: constructions and applications, Selected Talks: https://www.math.ucdavis.edu/ osserman/math/impa.pdf, IMPA, RJ, 2010.
B. Osserman, Dimension counts for limit linear series on curves not of compact type, Preprint. arXiv:1410.5450v1, to appear Mathematische Zeitschrift (2014).
B. Osserman, Limit linear series for curves not of compact type, Preprint. arXiv:1406.6699v3 (2014).
E. Reyssat, Quelques Aspects des Surfaces de Riemann, Progress in mathematics. Birkhauser, New York, 1989.
B. Riemann, Theorie der Abel'schen funktionen, Journal fur die reine und angewandte Mathematik 54 (1857), 115-155.
P. Rizzo, Level-delta and stable limit linear series on singular curves, Tese de doutorado, IMPA, Rio de Janeiro, 2013, Disponible en http://preprint.impa.br/visualizar?id=6152.
I. Schwarz, Brill-Noether theory for cyclic covers, Preprint. arXiv:1603.05084v1. (2016).
K.O. Stohr and J.F. Voloch., Weierstrass points on curves over nite elds, Proc. London Math. Soc. 52 (1986), no. 3, 1-19.
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Licencia
Derechos de autor 2017 Revista Colombiana de Matemáticas
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.