Publicado
On Property (Saw) and others spectral properties type Weyl-Browder theorems
Sobre la propidedad (Saw) y otras propiedades espectrales tipo teoremas de Weyl-Browder
DOI:
https://doi.org/10.15446/recolma.v51n2.70899Palabras clave:
Semi B-Fredholm operator, a-Weyl's theorem, property (Saw), property (Sab) (en)Operador semi-B-Fredholm, teorema de a-Weyl, propiedad (Saw), propiedad (Sab) (es)
Descargas
Referencias
P. Aiena, Fredholm and Local Spectral Theory, with Applications to Multipliers, Kluwer, 2004.
P. Aiena, Quasi-Fredholm operators and localized SVEP, Acta Sci. Math.
(Szeged) 73 (2007), 251-263.
P. Aiena, E. Aponte, and E. Balzan, Weyl type Theorems for left and right polaroid operators, Integr. Equ. Oper. Theory 66 (2010), 1-20.
P. Aiena, M. T. Biondi, and C. Carpintero, On drazin invertibility, Proc.
Amer. Math. Soc. 136 (2008), 2839-2848.
P. Aiena, C. Carpintero, and E. Rosas, Some characterization of operators satisfying a-Browder's theorem, J. Math. Anal. Appl. 311 (2005), 530-544.
P. Aiena and L. Miller, On generalized a-Browder's theorem, Studia Math. 180 (2007), 285-299.
M. Amouch and M. Berkani, On the property (gw), Mediterr. J. Math. 5
(2008), 371-378.
M. Amouch and H. Zguitti, On the equivalence of Browder's theorem and generalized Browder's theorem, Glasgow Math. J. 48 (2006), 179-185.
M. Berkani, Restriction of an operator to the range of its powers, Studia
Math. 140 (2000), 163-175.
M. Berkani, M. Kachad, H. Zariouh, and H. Zguitti, Variations on a-Browder-type theorems, Sarajevo J. Math. 9 (2013), 271-281.
M. Berkani and J. Koliha, Weyl type theorems for bounded linear operators, Acta Sci. Math. (Szeged) 69 (2003), 359-376.
M. Berkani, M. Sarih, and H. Zariouh, Browder-type theorems and SVEP, Mediterr. J. Math. 8 (2011), 399-409.
M. Berkani and H. Zariouh, Extended Weyl type theorems, Math. Bohemica 134 (2009), 369-378.
M. Berkani and H. Zariouh, New extended Weyl type theorems, Mat. Vesnik 62 (2010), 145-154.
L. A. Coburn, Weyl's theorem for nonnormal operators, Michigan Math. J. 13 (1966), 285-288.
J. K. Finch, The single valued extension property on a Banach space, Pacific J. Math. 58 (1975), 61-69.
A. Gupta and N. Kashayap, Property (Bw) and Weyl type theorems, Bull. Math. Anal. Appl. 3 (2011), 1-7.
A. Gupta and N. Kashayap, Variations on Weyl type theorems, Int. J. Contemp. Math. Sciences 8 (2012), 189-198.
V. Rakocevic, On a class of operators, Mat. Vesnik 37 (1985), 423-426.
A. Gupta and N. Kashayap, Operators obeying a-Weyl's theorem, Rev. Roumaine Math. Pures Appl. 34 (1989), 915-919.
M. H. M. Rashid, Properties (t) and (gt) for bounded linear operators,
Mediterr. J. Math. 11 (2014), 729-744.
M. H. M. Rashid and T. Prasad, Variations of Weyl type theorems, Ann
Funct. Anal. Math. 4 (2013), 40-52.
M. H. M. Rashid and T. Prasad, Property (Sw) for bounded linear operators, Asia-European J. Math. 8 (2015), 14 pages, DOI: 10.1142/S1793557115500126.
J. Sanabria, C. Carpintero, E. Rosas, and O. García, On generalized property (v) for bounded linear operators, Studia Math. 212 (2012), 141-154.
H. Zariouh, Property (gz) for bounded linear operators, Mat. Vesnik 65
(2013), 94-103.
H. Zariouh, New version of property (az), Mat. Vesnik 66 (2014), 317-322.
H. Zariouh and H. Zguitti, Variations on Browder's theorem, Acta Math. Univ. Comenianae 81 (2012), 255-264.
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
CrossRef Cited-by
1. Zakariae Aznay, Hassan Zariouh. (2022). The Berkani's property and a note on some recent results. Linear and Multilinear Algebra, 70(20), p.5913. https://doi.org/10.1080/03081087.2021.1939254.
2. José Sanabria, Carlos Carpintero, Jorge Rodríguez, Ennis Rosas, Orlando García. (2018). On new strong versions of Browder type theorems. Open Mathematics, 16(1), p.289. https://doi.org/10.1515/math-2018-0029.
3. Sonia Keskes. (2023). Weyl’s type theorems for linear relations satisfying the single valued extension property. Monatshefte für Mathematik, 201(3), p.803. https://doi.org/10.1007/s00605-023-01862-x.
4. J. Sanabria, L. Vásquez, C. Carpintero, E. Rosas, O. García. (2019). Strong variations of Weyl and Browder type theorems for direct sums and restrictions. Rendiconti del Circolo Matematico di Palermo Series 2, 68(1), p.153. https://doi.org/10.1007/s12215-018-0348-8.
5. Elvis Aponte, José Sanabria, Luis Vásquez. (2021). Perturbation Theory for Property (VE) and Tensor Product. Mathematics, 9(21), p.2775. https://doi.org/10.3390/math9212775.
Dimensions
PlumX
Visitas a la página del resumen del artículo
Descargas
Licencia
Derechos de autor 2017 Revista Colombiana de Matemáticas
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.