Publicado
Quasi Partial Sums of Harmonic Univalent Functions
Sumas Cuasi-Parciales de Funciones Armónicas Univalentes
DOI:
https://doi.org/10.15446/recolma.v53n1.81035Palabras clave:
quasi-partial sums, integral operator, harmonic functions (en)Sumas cuasi-parciales, operador integral, funciones armónicas (es)
Descargas
Referencias
K. O. Babalola, Quasi-partial sums of the generalized Bernardi integral of certain analytic functions, J. Nigerian Assoc. Math. Phy. 11 (2007), 67-70.
K. K. Dixit and S. Porwal, A subclass of harmonic univalent functions with positive coeficients, Tamkang J. Math. 41 (2010), no. 3, 261-269.
E. A. Eljamal and M. Darus, Inclusion properties for certain subclasses of p-valent functions associated with new generalized derivative operator, Vladikavkaz Mathematical Journal 15 (2013), no. 2, 27-34.
W. Goodman, Univalent functions, Vol. I, II, Marnier Publishing, Florida, 1983.
J. M. Jahangiri and K. Farahmand, Partial sums of functions of bounded turning, J. Inequal. Pure Appl. Math., 4 (2003), no. 4, 1-3, Art. 79.
S. Y. Karpuzogullari, M. Ozturk, and M. Yamankaradeniz, A subclass of harmonic univalent functions with negative coecients, Appl. Math. Comput. 142 (2003), 469-476.
T. O. Opoola, On a new subclasses of univalent functions, Mathematica (Cluj) (36) 59 (1994), no. 2, 195-200.
S. Porwal and K. K. Dixit, Partial sums of harmonic univalent functions, Studia Univ. Babes Bolayi 28 (2013), no. 1, 15-21.
S. Porwal and K. K. Dixit, Some properties of generalized convolution of harmonic univalent functions, Demonstratio Math. 43 (2013), no. 1, 63-74.
G. S. Salagean, Subclasses of univalent functions, Complex Analysis-Fifth Romanian-Finnish Seminar. Springer, Berlin, Heidelberg, 1983.
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
CrossRef Cited-by
1. Khadeejah Rasheed Alhindi. (2025). Application of the q-derivative operator to a specialized class of harmonic functions exhibiting positive real part. AIMS Mathematics, 10(1), p.1935. https://doi.org/10.3934/math.2025090.
Dimensions
PlumX
Visitas a la página del resumen del artículo
Descargas
Licencia
Derechos de autor 2019 Revista Colombiana de Matemáticas

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.