Publicado
The Gauss decomposition of products of spherical harmonics
Descomposición de Gauss del producto de armónicas esféricas
DOI:
https://doi.org/10.15446/recolma.v53n1.81037Palabras clave:
Harmonic polynomials, Gauss decomposition, products of spherical harmonics (en)Polinomios armónicos, descomposición de Gauss, producto de armónicas esféricas (es)
Descargas
Referencias
G. S. Adkins, Three-dimensional Fourier transforms, integrals of spherical Bessel functions, and novel delta function identities, Bull. Allahabad Math. Soc. 31 (2016), 215-246.
G. S. Adkins, Angular decomposition of tensor products of a vector, Indian J. Math. 60 (2018), 65-84.
S. Axler, P. Bourdon, and W. Ramey, Harmonic Function Theory, second edition, Springer, New York, 2001.
A. Erdélyi, Die Funksche Integralgleichung der Kugelflächenfunktionen und ihre Übertragung auf die Überkugel, Math. Ann. 115 (1938), 456-465.
R. Estrada, Regularization and derivatives of multipole potentials, J. Math. Anal. Appls. 446 (2017), 770-785.
R. Estrada, The Funk-Hecke formula, harmonic polynomials, and derivatives of radial distributions, Rev. Paranaense de Matematica 37 (2018), 141-155.
R. Estrada and R. P. Kanwal, Distributional solutions of singular integral equations, J. Int. Eqns. 8 (1985), 41{85.
R. Estrada and R. P. Kanwal, A distributional approach to Asymptotics. Theory and Applications, Birkhäuser, Boston, 2002, second edition.
R. Estrada and B. Rubin, Radon-John transforms and spherical harmonics, Contemporary Mathematics 714 (2018), https://doi.org/10.1090/conm/714/14329.
G. B. Folland, Introduction to Partial Differential Equations, Princeton University Press, Princeton, 1976.
P. Funk, Beiträge zur Theorie der Kugelfunktionen, Math. Ann. 77 (1916), 136-152.
E. Hecke, Über orthogonal-invariante Integralgleichungen, Math. Ann. 78 (1918), 398-404.
E. W. Hobson, Spherical and Ellipsoidal Harmonics, Cambridge Univ. Press, London, 1931.
N. M. Nikolov, R. Stora, and I. Todorov, Renormalization of massless Feynman amplitudes in configuration space, Rev. Math. Phys. 26 (2014), 143002.
E. Parker, An apparent paradox concerning the field of an ideal dipole, European J. Physics 38 (2017), 025205 (9 pp).
B. Rubin, Introduction to Radon transforms (with elements of Fractional calculus and Harmonic Analysis), Cambridge University Press, Cambridge, 2015.
Bateman Manuscript Project Staff, Higher transcendental functions, vol 2, McGraw Hill, New York, 1953.
J. C. Várilly and J. M. Gracia-Bondía, Stora's fine notion of divergent amplitudes, Nucl. Phys. B 912 (2016), 26-37.
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
CrossRef Cited-by
1. Keith Conrad, Ambar N. Sengupta. (2022). Rotational symmetries in polynomial rings. Journal of Algebra, 612, p.379. https://doi.org/10.1016/j.jalgebra.2022.08.031.
Dimensions
PlumX
Visitas a la página del resumen del artículo
Descargas
Licencia
Derechos de autor 2019 Revista Colombiana de Matemáticas
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.