Publicado

2019-12-11

The Pedersen Rigidity Problem

DOI:

https://doi.org/10.15446/recolma.v53nsupl.84095

Palabras clave:

action, crossed-product, exterior equivalence, outer conjugacy, generalized fixed-point algebra (en)
Acción, producto cruzado, equivalencia exterior, conjugación externa, álgebra generalizada de punto fijo (es)

Descargas

Autores/as

  • S. Kaliszewski Arizona State University
  • Tron Omland University of Oslo
  • John Quigg Arizona State University
If is an action of a locally compact abelian group G on a C*-algebra A, Takesaki-Takai duality recovers (A, α) up to Morita equivalence from the dual action of Ĝ on the crossed product A × α G. Given a bit more information, Landstad duality recovers (A, α) up to isomorphism. In between these, by modifying a theorem of Pedersen, (A, α) is recovered up to outer conjugacy from the dual action and the position of A in M(A ×α G). Our search (still unsuccessful, somehow irritating) for examples showing the necessity of this latter condition has led us to formulate the "Pedersen Rigidity problem". We present numerous situations where the condition is redundant, including G discrete or A stable or commutative. The most interesting of these "no-go theorems" is for locally unitary actions on continuous-trace algebras.
Si α es una acción de un grupo abeliano localmente compacto G sobre una C*-álgebra A, la dualidad de Takesaki-Takai recupera (A, α), salvo equivalencia de Morita, de la acción dual de Ĝ sobre el producto cruzado A × α G. Mediante un poco más de información, la dualidad de Landstad recupera (A, α) salvo isomorfismo. De manera intermedia, mediante la modificación de un teorema de Pedersen, (A α) es recuperado, salvo conjugación externa, de la acción dual y de la posición de A en M(A ×α G). Nuestra búsqueda (todavía sin éxito, de alguna manera irritante) de ejemplos que prueben la necesidad de esta última condición, nos ha conducido a a formular el "problema de rigidez de Pedersen". Presentamos numerosas situaciones donde la condición es redundante, incluídos los casos en que G es discreto, o bien A es estable o conmutativo. Lo más interesante de estos "teoremas de no usar" es para acciones localmente unitarias sobre álgebras trazo-continuas.

Referencias

A. Buss and S. Echterhoff, Imprimitivity theorems for weakly proper actions of locally compact groups, Ergodic Theory Dynam. System 35 (2015), no. 8, 2412-2457.

F. Combes, Crossed products and Morita equivalence, Proc. London Math. Soc. 49 (1984), 289-306.

S. Kaliszewski, T. Omland, and J. Quigg, Cuntz-Li algebras from a-adic numbers, Rev. Roumaine Math. Pures Appl. 59 (2014), no. 3, 331-370.

S. Kaliszewski, T. Omland, and J. Quigg, Three versions of categorical crossed-product duality, New York J. Math. 22 (2016), 293-339.

S. Kaliszewski, T. Omland, and J. Quigg, Rigidity theory for C*-dynamical systems and the "Pedersen Rigidity Problem", Internat. J. Math. 29 (2018), no. 3, 1850016, 18 pp.

D. Olesen, G. K. Pedersen, and M. Takesaki, Ergodic actions of compact abelian groups, J. Operator Theory 3 (1980), no. 2, 237-269.

G. K. Pedersen, Dynamical systems and crossed products, Operator algebras and applications, Part I (Kingston, Ont., 1980), Proc. Sympos. Pure Math. 38 (1982), 271-283.

J. C. Quigg and I. Raeburn, Induced C*-algebras and Landstad duality for twisted coactions, Trans. Amer. Math. Soc. 347 (1995), 2885-2915.

I. Raeburn and J. Rosenberg, Crossed products of continuous-trace C*-algebras by smooth actions, Trans. Amer. Math. Soc. 305 (1988), no. 1, 1-45.

M. A. Rieffel, Induced representations of C*-algebras, Adv. Math. 13 (1974), 176-257.

Cómo citar

APA

Kaliszewski, S., Omland, T. y Quigg, J. (2019). The Pedersen Rigidity Problem. Revista Colombiana de Matemáticas, 53(supl), 237–244. https://doi.org/10.15446/recolma.v53nsupl.84095

ACM

[1]
Kaliszewski, S., Omland, T. y Quigg, J. 2019. The Pedersen Rigidity Problem. Revista Colombiana de Matemáticas. 53, supl (dic. 2019), 237–244. DOI:https://doi.org/10.15446/recolma.v53nsupl.84095.

ACS

(1)
Kaliszewski, S.; Omland, T.; Quigg, J. The Pedersen Rigidity Problem. rev.colomb.mat 2019, 53, 237-244.

ABNT

KALISZEWSKI, S.; OMLAND, T.; QUIGG, J. The Pedersen Rigidity Problem. Revista Colombiana de Matemáticas, [S. l.], v. 53, n. supl, p. 237–244, 2019. DOI: 10.15446/recolma.v53nsupl.84095. Disponível em: https://revistas.unal.edu.co/index.php/recolma/article/view/84095. Acesso em: 22 ene. 2025.

Chicago

Kaliszewski, S., Tron Omland, y John Quigg. 2019. «The Pedersen Rigidity Problem». Revista Colombiana De Matemáticas 53 (supl):237-44. https://doi.org/10.15446/recolma.v53nsupl.84095.

Harvard

Kaliszewski, S., Omland, T. y Quigg, J. (2019) «The Pedersen Rigidity Problem», Revista Colombiana de Matemáticas, 53(supl), pp. 237–244. doi: 10.15446/recolma.v53nsupl.84095.

IEEE

[1]
S. Kaliszewski, T. Omland, y J. Quigg, «The Pedersen Rigidity Problem», rev.colomb.mat, vol. 53, n.º supl, pp. 237–244, dic. 2019.

MLA

Kaliszewski, S., T. Omland, y J. Quigg. «The Pedersen Rigidity Problem». Revista Colombiana de Matemáticas, vol. 53, n.º supl, diciembre de 2019, pp. 237-44, doi:10.15446/recolma.v53nsupl.84095.

Turabian

Kaliszewski, S., Tron Omland, y John Quigg. «The Pedersen Rigidity Problem». Revista Colombiana de Matemáticas 53, no. supl (diciembre 11, 2019): 237–244. Accedido enero 22, 2025. https://revistas.unal.edu.co/index.php/recolma/article/view/84095.

Vancouver

1.
Kaliszewski S, Omland T, Quigg J. The Pedersen Rigidity Problem. rev.colomb.mat [Internet]. 11 de diciembre de 2019 [citado 22 de enero de 2025];53(supl):237-44. Disponible en: https://revistas.unal.edu.co/index.php/recolma/article/view/84095

Descargar cita

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Visitas a la página del resumen del artículo

246

Descargas

Los datos de descargas todavía no están disponibles.