Publicado
On Symmetric (1, 1)-Coherent Pairs and Sobolev Orthogonal polynomials: an algorithm to compute Fourier coefficients
Sobre (1, 1) pares coherentes simétricos y polinomios ortogonales Sobolev: un algoritmo para calcular coeficientes de Fourier
DOI:
https://doi.org/10.15446/recolma.v53n2.85524Palabras clave:
Orthogonal polynomials, Symmetric (1 1)-coherent pairs, Sobolev-Fourier series (en)Polinomios ortogonales, Pares Simétricos (1 1)-Coherentes, Series Sobolev-Fourier (es)
Descargas
Referencias
P. Althammer, Eine erweiterung des orthogonalitatsbegriffes bei polynomen und deren anwendung auf die beste approximation, J. Reine Angew. Math. 211 (1962), 192-204.
A. C. Berti and A. Sri Ranga, Companion orthogonal polynomials: some applications, Appl. Numer. Math. 39 (2001), 127-149.
C. Brezinski, A direct proof of the Christoffel-Darboux identity and its equivalence to the recurrence relationship, J Comput Appl Math. 32 (1990), no. 1, 17-25.
T. S. Chihara, An Introduction to Orthogonal Polynomials, Gordon and Breach, 1978.
M. N. de Jesús, F. Marcellán, J. Petronilho, and N. Pinzón-Cortés, (M, N)-coherent pairs of order (m, k) and Sobolev orthogonal polynomials, J. Comput. Appl. Math. 256 (2014), 16-35.
M. N. de Jesús and J. Petronilho, On linearly related sequences of derivatives of orthogonal polynomials, J. Math. Anal. Appl. 347 (2008), 482-492.
A. M. Delgado, Ortogonalidad no estándar: problemas directos e inversos, Tesis doctoral, Universidad Carlos III de Madrid, 2006.
A. M. Delgado and F. Marcellán, On an extension of symmetric coherent pairs of orthogonal polynomials, J. Comput. Appl. Math. 178 (2005), 155-168.
H. Dueñas, F. Marcellán, and A. Molano, Asymptotics of Sobolev orthogonal polynomials for Hermite (1,1)-coherent pairs, J. Math. Anal. Appl. 467 (2018), no. 1, 601-621.
H. Dueñas, F. Marcellán, and A. Molano, A classification of symmetric (1, 1)-coherent pairs, Mathematics 7 (2019), no. 2-213, 1-32.
J. Favard, Sur les polynômes de Tchebicheff, C.R. Acad. Sci. Paris 200 (1935), 2052-2053.
B. Fischer and G. H. Golub, How to generate unknown orthogonal polynomials out of known orthogonal polynomials, J. Comput. Appl. Math. 43 (1992), 99-115.
A. Iserles, P. E. Koch, S. P. Norsett, and J. M. Sanz-Serna, On polynomials orthogonal with respect to certain Sobolev inner products, J. Approx. Theory 65 (1991), 151-175.
M. Ismail and D. R. Masson, Generalized orthogonality and continued fractions, J. Approx. Theory 83 (1995), 1-40.
D. C. Lewis, Polynomial least square approximations, Amer. J. Math. 69 (1947), 273-278.
F. Marcellán and R. Álvarez Nodarse, On the "Favard theorem" and its
extensions, J. Comput. Appl. Math. 127 (2001), 231-254.
F. Marcellán and Y. Xu, On Sobolev orthogonal polynomials, Expo. Math. 33 (2015), no. 3, 308-352.
P. Maroni, Une théorie algébrique des polynômes orthogonaux. Application aux polynômes orthogonaux semi-classiques, In Orthogonal polynomials and their applications (Erice, 1990), C. Brezinski, L. Gori, A, Ronveaux Editors, IMACS Ann. Comput. Appl. Math. 9 (1991), 95-130.
H. G. Meijer, A short history of orthogonal polynomials in a Sobolev space I. The non-discrete case, Niew Archief voor Wiskunde 14 (1996), 93-113.
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
CrossRef Cited-by
1. Luis Alejandro Molano Molano. (2023). Inverse problems, Sobolev–Chebyshev polynomials and asymptotics. Ukrains’kyi Matematychnyi Zhurnal, 75(10), p.1411. https://doi.org/10.3842/umzh.v75i10.7293.
2. G. A. Marcato, F. Marcellán, A. Sri Ranga, Yen Chi Lun. (2023). Coherent pairs of measures of the second kind on the real line and Sobolev orthogonal polynomials. An application to a Jacobi case. Studies in Applied Mathematics, 151(2), p.475. https://doi.org/10.1111/sapm.12583.
3. M. Hancco Suni, G.A. Marcato, F. Marcellán, A. Sri Ranga. (2023). Coherent pairs of moment functionals of the second kind and associated orthogonal polynomials and Sobolev orthogonal polynomials. Journal of Mathematical Analysis and Applications, 525(1), p.127118. https://doi.org/10.1016/j.jmaa.2023.127118.
4. Luis Alejandro Molano Molano. (2024). Inverse Problems, Sobolev–Chebyshev Polynomials, and Asymptotics. Ukrainian Mathematical Journal, 75(10), p.1601. https://doi.org/10.1007/s11253-024-02281-3.
Dimensions
PlumX
Visitas a la página del resumen del artículo
Descargas
Licencia
Derechos de autor 2020 Revista Colombiana de Matemáticas
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.