On L-O-supplemented modules
Sobre módulos L-O-suplementados
DOI:
https://doi.org/10.15446/recolma.v54n2.93842Palabras clave:
Supplemented module, I-⊕-supplemented module, dual Rickart module, endomorphism ring, V-ring (en)Módulo suplementado, módulo I-⊕-suplementado, módulo Rickart dual, endomorfismo de anillos, V-anillo (es)
Descargas
En esta nota nosotros introducimos los módulos L-⊕-suplementados, una generalizacion de los módulos ⊕-suplementados. Un módulo M se dice I-⊕-suplementado si para cada φ ∈ EndR (M), existe un sumando directo L de M tal que Imφ + L = M y Imφ ∩ L « L. Se demuestra que si M es un módulo I-⊕-suplementado con la condición D3 , entonces cada sumando directo de M es I-⊕-suplementado. Demostramos que si M = M1 ⊕ M2 es I-⊕-suplementado tal que M1 y M2 son proyectivos relativos, entonces M1 y M2 son I-⊕-suplementados. Estudiamos algunos anillos cuyos modulos son I-⊕-suplementados.
In this note we introduce L-⊕-supplemented modules as a proper generalization of ⊕-supplemented modules. A module M is called I-⊕-supplemented if for every φ ∈ EndR (M), there exists a direct summand L of M such that Imφ + L = M and Imφ ∩ L « L. It is shown that if M is a I-⊕-supplemented module with D3 condition, then every direct summand of M is I-⊕-supplemented. We prove that if M = M1 ⊕ M2 is I-⊕-supplemented such that M1 and M2 are relative projective, then M1 and M2 are I-⊕-supplemented. We study some rings whose modules are I-⊕-supplemented.
Referencias
T. Amouzegar, generalization of lifting modules, Ukrainian Math. J., DOI: 10.1007/s11253-015-1042-z 66 (2015), no. 1. DOI: https://doi.org/10.1007/s11253-015-1042-z
T. Amouzegar and Y. Talebi, A generalization of ⊕-supplemented modules, Eur. J. Pure Appl. Math. 5 (2012), no. 2, 108-115.
E. Türkmen H. Calisici, Generalized ⊕-supplemented modules, Algebra Discrete Math. 10 (2010), no. 2, 10-18.
D. Keskin, On lifting modules, Comm. Algebra 28 (2000), no. 7, 3427-3440. DOI: https://doi.org/10.1080/00927870008827034
D. Keskin and W. Xue, Generalizations of lifting modules, Acta Math. Hungar 91 (2001), no. 3, 253-261. DOI: https://doi.org/10.1023/A:1010675423852
G. Lee, S. T. Rizvi, and C. S. Roman, Dual Rickart modules, Comm. Algebra 39 (2011), 4036-4058. DOI: https://doi.org/10.1080/00927872.2010.515639
S. H. Mohamed and B. J. Müller, Continuous and Discrete Modules, London Math. Soc. Lecture Notes Series 147, Cambridge, University Press,
D. K. Tütüncü and R. Tribak, On T -noncosingular modules, Bull. Aust. Math. Soc. 80 (2009), 462-471. DOI: https://doi.org/10.1017/S0004972709000409
D. K. Tütüncü and R. Tribak, On dual Baer modules, Glasgow Math. J. 52 (2010), 261-269. DOI: https://doi.org/10.1017/S0017089509990334
R. Wisbauer, Foundations of module and ring theory, Gordon and Breach, Reading, 1991.