Hölder-continuous solution for a nonlinear elasticity system
Palabras clave:
Hölder-Continuous solutions, Cauchy problem, Riemann invariants, 2000 Mathematics Subject Classification, Primary: 35B40, Secondary: 35L65 (en)Descargas
Abstract. In this paper the Cauchy problem for a non-linear elasticity system in Lagrange coordinates is considered. Using the method of null viscosity we prove the existence of Hölder-Continuous solutions for the non-linear elasticity system vt — ux = 0, ut — σ (v)x = 0.
Referencias
R. A. Adams, Sobolev Spaces, Academies Press Inc., 1975.
K. N. Chueh, C. C. Conley & J. Smoller, Positively Invariants for System of Linear Diffusion Equations, Ind. Univ. Math. J. 26, 373-392, 1977
R. J. Diperna, Convergence of Approximate Solutions to Conservations Laws, Arch. Rat., Mch. Anal. 8 2 (1983), 27-70.
F. N. Hermano, Compacidade Compensada Aplicada às Leis Conservaçao, 19 Coloquio Brasileiro de Matemática.
D. Hoff & J. Smoller, Solutions in Large for Certain Nonlinear Parabolic System, Ann. Inst. Henri Poincare, 2 no 3 (1985), 213-235.
P. D. Lax, Hyperbolic Systems of Conservations Laws II, Comm. Pure Appl. Math. 10, 1957.
Yun-guang Lu, The Global Holder-Continuous Solution of Isentropic Gas Dynamics, Proc. Roy. Soc. Edinburg Sect. 1 2 3 (1993), 231-238.
Yun-guang Lu, The Global Holder-Continuous Solution of nonstrictly Hyperbolic System, J. Partial Differential Equations, (1994), 132-142.
Yun-guang Lu, Hyperbolic conservation laws and the compensated compactness method, Chapman & Hall/CRC. 2003.
O. A. Ladysenskaya, V. Solonnikov & N. N. Uraltseva, Linear and quasilinear equations of parabolic type, Amer. Math. Soc. Transl., 1968.
D. Serre, Systems of Conservation Laws, Vols. 1,2, Cambridge University Press: Cambridge, 1999, 2000
J. Smoller, Shock Waves and Reaction-Diffusion Equations, ed . Springer Verlag, 1983.