Publicado

2004-06-01

Some p-norm convergence results for Jacobi and Gauss-Seidel iterations

Palabras clave:

Jacobi method, Gauss-Seidel method, Systems of linear equations, Iterative solution, Convergence, Sassenfeld condition, 2000 Mathematics Subject Classification, Primary: 65F10 (en)

Descargas

Autores/as

  • Johnson C. Smith University Johnson C. Smith University
  • Juan Carlos Orozco Universidad de Antioquia

Abstract. Let A be a matrix such that the diagonal matrix D with the same diagonal as A is invertible. It is well known that if (1) A satisfies the Sassenfeld condition then its Gauss-Seidel scheme is convergent, and (2) if D-1 A certifies certain classical diagonal dominance conditions then the Jacobi iterations for A are convergent. In this paper we generalize the second result and extend the first result to irreducible matrices satisfying a weak Sassenfeld condition.

Referencias

O. Axelsson, Iteration Solution, Cambridge University Press, New York, 1994.

W. Hackbusch, Iterative solution of large sparse system s of linear system s, Springer-Verlag, Berlin, 1994.

J. M. Ortega, Introduction to parallel and vector solution of linear systems, Plenum Press, New York, 1988.

R. Kress, Numerical Analysis, Springer-Verlag, Berlin, 1998.

Y. Saad, Iterative methods for sparse linear systems, Second Edition, SIAM, Philadelphia, 2003.

G.F. Simmons, Introduction to Topology and Modem Analysis, McGraw-Hill, New York, 1963.

D. M. Young, Iterative Solution for Large Systems, Academic Press, New York, 1971.

R. Varga, Matrix Iterative Analysis, Prentice Hall, New York, 1962.

Cómo citar

APA

Smith University, J. C. & Orozco, J. C. (2004). Some p-norm convergence results for Jacobi and Gauss-Seidel iterations. Revista Colombiana de Matemáticas, 38(2), 65–71. https://revistas.unal.edu.co/index.php/recolma/article/view/94326

ACM

[1]
Smith University, J.C. y Orozco, J.C. 2004. Some p-norm convergence results for Jacobi and Gauss-Seidel iterations. Revista Colombiana de Matemáticas. 38, 2 (jul. 2004), 65–71.

ACS

(1)
Smith University, J. C.; Orozco, J. C. Some p-norm convergence results for Jacobi and Gauss-Seidel iterations. rev.colomb.mat 2004, 38, 65-71.

ABNT

SMITH UNIVERSITY, J. C.; OROZCO, J. C. Some p-norm convergence results for Jacobi and Gauss-Seidel iterations. Revista Colombiana de Matemáticas, [S. l.], v. 38, n. 2, p. 65–71, 2004. Disponível em: https://revistas.unal.edu.co/index.php/recolma/article/view/94326. Acesso em: 27 dic. 2025.

Chicago

Smith University, Johnson C., y Juan Carlos Orozco. 2004. «Some p-norm convergence results for Jacobi and Gauss-Seidel iterations». Revista Colombiana De Matemáticas 38 (2):65-71. https://revistas.unal.edu.co/index.php/recolma/article/view/94326.

Harvard

Smith University, J. C. y Orozco, J. C. (2004) «Some p-norm convergence results for Jacobi and Gauss-Seidel iterations», Revista Colombiana de Matemáticas, 38(2), pp. 65–71. Disponible en: https://revistas.unal.edu.co/index.php/recolma/article/view/94326 (Accedido: 27 diciembre 2025).

IEEE

[1]
J. C. Smith University y J. C. Orozco, «Some p-norm convergence results for Jacobi and Gauss-Seidel iterations», rev.colomb.mat, vol. 38, n.º 2, pp. 65–71, jul. 2004.

MLA

Smith University, J. C., y J. C. Orozco. «Some p-norm convergence results for Jacobi and Gauss-Seidel iterations». Revista Colombiana de Matemáticas, vol. 38, n.º 2, julio de 2004, pp. 65-71, https://revistas.unal.edu.co/index.php/recolma/article/view/94326.

Turabian

Smith University, Johnson C., y Juan Carlos Orozco. «Some p-norm convergence results for Jacobi and Gauss-Seidel iterations». Revista Colombiana de Matemáticas 38, no. 2 (julio 1, 2004): 65–71. Accedido diciembre 27, 2025. https://revistas.unal.edu.co/index.php/recolma/article/view/94326.

Vancouver

1.
Smith University JC, Orozco JC. Some p-norm convergence results for Jacobi and Gauss-Seidel iterations. rev.colomb.mat [Internet]. 1 de julio de 2004 [citado 27 de diciembre de 2025];38(2):65-71. Disponible en: https://revistas.unal.edu.co/index.php/recolma/article/view/94326

Descargar cita

Visitas a la página del resumen del artículo

88

Descargas

Los datos de descargas todavía no están disponibles.