Polynomial identities for hyper-matrices
Palabras clave:
Polynomial identities, Hyper-matrices, 2000 Mathematics Subject Classification, Primary: 14M12. Secondary: 15.A24. (en)Descargas
Abstract. We develop an algorithm to construct algebraic invariants for hyper-matrices. We then construct hyper-determinants and exhibit a generalization of the Cayley-Hamilton theorem for hyper-matrices.
Se desarrolla un algoritmo para construir invariantes algebraicos para hiper-matrices. A continuación se construyen hiper-determinantes y se muestra una generalización del teorema de Cayley-Hamilton para hipermatrices.
Referencias
A. Acín, J.I. Latorre & P. PASCUAL, Three-party entanglement from positronium, Phys. Rev. A. 63, 042107 (2001).
D. G. Antzoulatos & A. A. Saw chuk, Hypermatrix algebra: Theory, CVGIP: Image Understanding 57 (1993), 24-41
D. G. Antzoulatos & A. A. Sawchuk, Hypermatrix algebra: Applications in parallel imaging processing, CVGIP: Image Understanding 57 (1993), 42-62.
G. S. Asanov, Finster Geometry, Relativity and Gauge Theories, Reidel, Dordrecht, 1985.
E. Briand, J.-G. Luque & J.—Y. Thibon, A complete set of covariants of the four qubit system, J. Phys. A: Math. Gen. 36 (2003), 9915-9927.
A. Cayley, On the Theory of Linear Transformations, Cambridge Math. J. 4 (1845), 193-209.
V. Coffman, J. Kundu & W. K. Wootters, Distributed entanglement, Phys. Rev. A. 61 052306 (2000).
I. M. Gelfand, M. M. Kapranov & A. V. Zelevinsky, Hyperdeterminants, Adv. Math. 96 (1992), 226-263.
I. M. Gelfand, M. M. Kapranov & A. V. ZeleVinsk y, Discriminants, Re sultants, and Multidimensional Determinants, Birkhauser, Boston, 1994.
C. M. Hull, Strongly coupled gravity and duality, Nucl. Phys. 583 B (2000), 237-259.
C. M. Hull, Symetries and compactifications of (4,0) conformal gravity, J. High Energy Phys. 12 007 (2000).
C. M. Hull, Duality in gravity and higher spin gauge fields, J. High Energy Phys. 9 027 (2001).
J.-G. Luque & J.-Y. Thibon, Polynomial invariants of four qubits, Phys. Rev. A. 67 042303 (2003).
P. A. MacMahon, Combinatory Analysis (Cambridge University Press, 1915); reprinting Chelsea, New York, 1960.
H. Rund, The Differential Geometry of Finsler Spaces Springer, Berlin, 1959.
M. L. Stein & P. R. Stein, Enumeration of stochastic matrices with integer elements, Los Alamos Scientific Laboratory, report LA-4434 (1970).
R. P. Stanley, Linear homogeneous diophantine equations and magic labelings of graphs, Duke Math. J. 40 (1973), 607-632.
V. Tapia, Integrable conformal field theory in four dimensions and fourth-rank geometry, Int. J. Mod. Phys. D. 3(1993), 413-429.
V. Tapia, D. K. Ross, A. L. Marrakchi & M. Cataldo, Renormalizable conformally invariant model for the gravitational field, Class. Quantum Grav. 13 (1996), 3261-3267.
V. Tapia & D. K. Ross, Conformal fourth-rank gravity, non-vanishing cosmological constant, and anisotropy, Class. Quantum Grav. 15 (1998), 245-249.
V. Tapia, Polynomial identities for hypermatrices, math-ph/0208010 (2002).
J. Weyman, Calculating discriminants by higher direct images, Trans. Am. Math. Soc. 343 (1994), 367-389.
J. Weyman & A. V. Zelevinsk y, Singularities of hyperdeterminants, Ann. Inst. Fourier Grenoble 46 (1996), 591-644. ¨
J. Weyman & A. V. Zelevinsk y, Multiplicative properties of protectively dual varieties, Manuscripta Math. 82 (1994), 139-148.