An improved convergence analysis of a superquadratic method for solving generalized equations
Palabras clave:
Superquadratic convergence, Generalized equations, Radius of convergence, Aubin continuity, Pseudo-Lipschitz map, 2000 Mathematics Subject Classification, Primary: 65K10, 65G99, Secondary: 47H04, 49M15 (en)Descargas
Abstract. We provide a finer local convergence analysis than before [6]-[9] of a certain superquadratic method for solving generalized equations under Hölder continuity conditions.
Nosotros hacemos un análisis de convergencia local más fino que el proporcionado antes de [6]-[9] de cierto método supercuadrático para resolver ecuaciones generalizadas bajo ciertas condiciones de continuidad de Hölder.
Referencias
I. K. Argyros, A unifying local-sem ilocal convergence analysis and applications for two-point Newton-like m ethods in Banach space, J. Math. Anal. Applic. 298 (2004), 374-397.
I. K. Argyros, Approximate Solution of Operator Equations with Applications, World Scientific Publ. Comp., New Jersey, USA, 2005.
I. K. Argyros, On the secant method for solving nonsmooth equations, J. Math. Anal. Applic. (to appear, 2006).
I. K. Argyros, D. Chen, & M. Tabatabai, The Halley-Werner method in Banach spaces, Revue d’Analyse Numerique et de theorie de l’Approximation, 1 (1994), 1-14.
J. P. Aubin, Lipschitz behavior of solutions to convex minimization problems, Math. Oper. Res. 9 (1984), 87-111.
J. P. Aubin & H. Frankowska, Set Valued Analysis, Birkhauser, Boston, 1990.
A. L. Dontchev, Local convergence of the Newton method for generalized equations, C.R.A.S. Paris 332 Ser. I (1996), 327-331.
A. L. Dontchev & W. W. Hager, An inverse function theorem for set-valued maps, Proc. Amer. Math. Soc. 121 (1994), 481-489.
M. H. Geoffroy & A. A. Pietrus, Superquadratic method for solving generalized equations in the Holder case, Ricerche di Matematica L II fasc. 2 (2003), 231-240.
A. D. Ioffe & V. M. Tikhomirov, Theory of Extremal Problems, North Holland, Amsterdam, 1979.
S. M. Robinson, Strong regular generalized equations, Math. Oper. Res. 5 (1980), 43-62.