Publicado
Tiempo local del superbrowniano en medios aleatorios
Local time of superbrownian motion in random environments
Palabras clave:
Tiempo local, Superprocesos, Procesos de medida-valor, 2000 Mathematics Subject Classification. 60G57, 60J55 (es)Local time, Superprocesses, Measure-valued processes (en)
Descargas
Se demuestra que el tiempo local del superbrowniano en medios aleatorios, con espacio de estados las medidas finitas en los borelianos de Rd, existe cuando d ≤ 3.
Referencias
Adler, R. J., and Lewin, M. Local time and Tanaka formulae for superbrownian motion and super stable processes. Stock. Proc. Appl. 41 (1992), 45-67.
Dawson, D. A. Measure-valued. Markov processes, vol. 1541 of Lecture Notes in Mathematics. Springer, 1991.
Dynkin, E. B. Representation for functionals of superprocesses by multiple stochastic integrals, with applications to self-intersection local times. Astérisque 157-158 (1988), 147-171.
Iscoe, I. Ergodic theory and local occupation time for measure-valued critical branching brownian motion. Stochastics 18 (1986), 197-243.
Kwon, Y., Cho, N., and Kang, H. J. Stochastic partial differencial equations for superprocesses in random environments. Stoch. Analysis and Appl. 20, 1 (2002), 145-163.
Levy, P. Processus Stochastiques et Mouvement Brownien. Gauthier-Villars, Paris, 1948.
López-Mimbela, J. A., and Villa, J. Super-brownian local time: A representation and two applications. Journal of Mathematical Sciences 121, 5 (2004), 2653-2663.
Mytnik, L. Superprocesses in random environments. Ann. Probab. 24, 4 (1996), 1953-1978.
Reed, M., and Sim on, B. Methods of modem mathematical physics, I: Functional Analysis. Academic Press, New York, 1980.
Xiang, K. On Tanaka formulae for (α , d, β)-superprocesses. Science in China Ser. A Mathematics 48, 9 (2005), 1194-1208.