Publicado
More on λ-closed sets in topological spaces
Más sobre conjuntos λ-cerrados en espacios topológicos
Palabras clave:
Topological spaces, Λ-sets, λ-open sets, λ-closed sets, λ-Ro spaces, λ-R1 spaces, 2000 Mathematics Subject Classification. 54B05, 54C08, 54D05 (en)Espacios topológicos, Λ-conjuntos, conjuntos λ-abiertos, conjuntos λ-cerrados, espacios λ-Ro, espacios λ-R1 (es)
Descargas
Abstract. In this paper, we introduce and study topological properties of λ-derived, λ-border, λ-frontier and λ-exterior of a set using the concept of λ-open sets. We also present and study new separation axioms by using the notions of λ-open and λ-closure operator.
En este artículo introducimos y estudiamos propiedades topológicas de λ-derivada, λ-borde, λ-frontera y λ-exterior de un conjunto usando el concepto de λ-conjunto abierto. Presentamos un nuevo estudio de axiomas de separación usando las nociones de operador λ-abierto y λ-clausura.
Referencias
Arenas, F. G., Dontchev, J., and Ganster, M. On λ-sets and dual of generalized continuity. Questions Answers Gen.Topology 15 (1997), 3-13.
Caldas, M., and Jafari, S. On some low separation axioms via λ-open and λ-closure operator. Rend. Circ. Mat. Di Palermo 54, 2 (2005), 195-208.
Davis, A. S. Indexed systems of neighborhoods for general topological spaces. Amer.Math.Monthly 68 (1961), 886-893.
Dixmier, J. Les C* -algébres et leurs représentations. Gauthier-Villars, Paris, 1964.
Dontchev, J. Contra-continuous functions and strongly S-closed spaces. Internat. J. Math. ݝۼ Math. Sci. 19, 2 (1996), 303-310.
Dunham, W. Ͳ 1/2 —spaces. Kyungpook Math.J. 17 (1977), 161-169.
Jafari, S. The set of all primitive ideals of a C* —algebra A is not an Ro space. International Journal of General Topology. To appear.
Khalimsky, E. D., Kopperman, R., and Meyer, P. R. Computer graphies and con¬nected topologies on finite ordered sets. Topology Appl. 36 (1990), 1-17.
Kovalevsky, V., and Kopperman, R. Some topology-based image processing algo¬rithms. Anals of the New York Academy of Sciences 728 (1994), 174-182.
Landi, G. An introduction to noncommutative spaces and their geometry. Springer-Verlag, Berlin, Heidelberg, 2002. Lecture Notes in Physics: Monographs (51).
Levine, N. Generalized closed sets in topology. Rend. Circ. Mat. Palermo 19, 2 (1970), 89-96.
Maki, H. Generalized A-sets and the associated closure operator. The Special Issue in Commemoration of Prof. Kazusada IKEDA's Retirement, 1. Oct. 1986, 139-146.