Publicado
On the propagation of acceleration waves in thermoelastic micropolar medias
Sobre la propagación de ondas aceleradas en medios micropolares termoelásticos
Palabras clave:
Acceleration waves, Micropolar continuum, Cosserat continuum, Nonlinear elasticity, 2000 Mathematics Subject Classification. 74A35, 74B20, 74J40. (en)Ondas de aceleración, Continuo micropolar, Continuo de Cosserat, Elasticidad no-lineal (es)
Descargas
Abstract. The conditions for propagation of accelerating waves in a general nonlinear thermoelastic micropolar media are established. Deformation of micropolar media is described by the time-varying displacement vector r(t) and tensor of microrotation r(t) at each point. We call a surface S(t) an accelerating wave (or a singular surface for a solution of the dynamic problem for the medium) if the points are points of continuity of both r(t) and ℍ(t) and their first spatial and time derivatives while the second spatial and time derivatives (acceleration) of r(t) and ℍ(t) have jumps on S(t) (meaning that their one-sided limits at S(t) differ). So S(t) carries jumps in the acceleration fields as it propagat es through the body. In the thermomechanics of a micropolar continuum, similar propagating surfaces of singularities can exist for the fields of temperature, heat flux, etc. We establish the kinematic and dynamic compatibility relations for the singular surface S(t) in a nonlinear micropolar thermoelastic medium. An analog of Fresnel-Hadamard-Duhem theorem and an expression for the acoustic tensor are derived.
The work was supported by the Russian Science Support Foundation and the Russian Foundation of Basic Research under grants 07-01-00525, 07-08-13589-ofi_c and by Universidad Nacional de Colombia, project of investigation No. 8003061.
Se establecen las condiciones de propagación de ondas aceleradas en un medio no lineal micropolar termoelástico. Las deformaciones del medio micropolar son descritas por las variaciones temporales del vector de desplazamiento r(t) y del tensor de microrotación r(t) en cada punto. Llamamos una superficie S(t) a una onda acelerada (o superficie singular para la solución del problema dinámico del medio) si los puntos son puntos de continuidad de r(t), ℍ(t) y sus primeras derivas espaciales y temporales, mientras que las segundas derivadas espaciales y temporales tienen saltos en S(t). Entonces S(t) transporta los saltos en los campos acelerados cuando se propagan en el cuerpo. En la termomecánica de un continuo micropolar, superficies de propagación similares pueden existir para los campos de temperatura y de flujo de calor. Establecemos las relaciones de compatibilidad cinética y dinámica para las superficies singulares en un medio micropolar termoelástico no lineal. Un análogo del teorema Fresnel-Hadamard-Duhem y una expresión para el tensor acústico son establecidos.
Referencias
Benallal , A., and Comi, C. Material instabilities in inelastic saturated porous media under dynamic loadings. Int. J. Solid. Struct. 39 (2002), 3693-3716.
Cosserat, E., and Cosserat, F. Théorie des corps deformables. Appendix, Paris, 1909. vi+226 p. (pp. 953-1173 of Chwolson’s Traite de Physicue. 2nd éd.).
Eremeyev, V. A. Acceleration waves in micropolar elastic media. Doklady Physics 50, 4 (2005), 204-206.
Eremeyev, V. A. Shell Structures: Theory and Applications. Taylor and Francis, London et al., 2005, ch. Nonlinear micropolar shells: theory and applications, pp. 11-18.
Eremeyev, V. A., and Zubov, L. M. On constitutive inequalities in nonlinear theory of elastic shells. ZAMM 87, 2 (2007), 94-101.
Eringen, A. C. Microcontinuum Field Theories. I. Foundations and Solids. Springer-Verlag, Berlin, Heidelberg, New-York et al, 1999.
Eringen, A. C., and Kafadar, C. B. Continuum Physics, vol. 4. Academic Press, New York, 1976, ch. Polar field theories, pp. 1-75.
Erofeev, V. I. Wave Processes in Solids with Microstructure. World Scientific, Singapore, 2003.
Koiter, W. T. Couple-stresses in the theory of elasticity, pt i-ii. In Proc. Koninkl. Neterland. Akad. Wetensh. (1964), vol. B 67, 1, pp. 17-44.
Loret, B., Simôes, F. M. F., and Martins, J. A. C. Growth and decay of acceleration waves in non-associative elastic-plastic fluid-saturated porous media. Int. J. Solid. Struct. 34, 13 (1997), 1583-1608.
Lurie, A. I. Nonlinear Theory of Elasticity. North-Holland, Amsterdam, New York, Oxford, Tokyo, 1990. 617 p.
Maugin, G. A. Acceleration waves in simple and linear viscoelastic micropolar materials. Int. J. Engin. Sci. 12 (1974), 143-157.
Maugin, G. A. Nonlinear Waves on Elastic Crystals. Oxford University Press, Oxford, 1999.
Nowacki, W. Theory of Asymmetric Elasticity. Pergamon-Press, Oxford, New-York, Toronto et al, 1986. 383 pp.
Sabatini, L., and Augusti , G. Homothermal acceleration waves in nematic liquid crystals. Int. J. Solid. Struct 38 (2001), 1227-1242.
Simôes, F. M. F., Martins, J. A. C., and Loret, B. Instabilities in elastic-plastic fluid-saturated porous media: harmonic wave versus acceleration wave analyses. Int. J. Solid. Struct. 36 (1999), 1277-1295.
Toupin, R. A. Theories of elasticity with couple-stress. Arch. Ration. Mech. and Analysis 17, 2 (1964), 85-112.
Truesdell, C. A First Course in Rational Continuum Mechanics. Academic Press, New York, 1977.
Truesdell, C. Rational Thermodynamics, 2 ed. Springer-Verlag, New York et al, 1984. 579 pp.
Truesdell, C., and Noll , W. Handbuch der Physik. Springer, Berlin, Heidelberg, New York, 1965, ch. The nonlinear field theories of mechanics, pp. 1-602.