Regularity of the solutions for a Robin problem and some applications
Regularidad de las soluciones para un problema de Robin y algunas aplicaciones
Palabras clave:
Robin problems, trace operators, variational formulation, weak solutions, Sobolev spaces, bootstrapping, Green formula, orthogonal sum of subspace, 2000 Mathematics Subject Classification. 35B65, 35J25, 35J60, 35P99 (en)Problemas de Robin, operador trazo, formulación variacional, soluciones débiles, espacios de Sobolev, argumento iterativo, fórmula de Green, suma ortogonal de subespacios (es)
Descargas
Abstract. In this paper we study the regularity of the solutions for a Robin problem, with a nonlinear term with sub-critical growth respect to a variable. We establish the Sobolev space H1(Ω) as the orthogonal sum of two subspaces, and we give the first step to demonstrate the existence of solutions of our problem.
En este artículo estudiamos la regularidad de las soluciones de un problema de Robin, con término no lineal con crecimiento subcrítico respecto a una variable. Expresamos el espacio de Sobolev H1(Ω) como la suma de dos subespacios dando el primer paso para la demostración de existencia de soluciones de nuestro problema.
Referencias
Arcoya, D., and Villegas, S. Nontrivial solutions for a Neumann problem with a nonlinear term asymptotically linear at — ∞ and superlinear at + ∞. Math.-Z 219, 4 (1995), 499-513.
Aubin, J. P. Approximation of elliptic boundary value problems. Wiley-Interscience, New York, 1972.
Baiocchi, C., and Capelo, A. Variational and quasivariational inequalities, aplications to free-boundary problems. John Wiley and Sons, New York, 1984.
Castro, R. A. Nontrivial solutions for a Robin problem with a nonlinear term asymptotically linear at — ∞ and superlinear at ∞. Revista Colombiana de Matemáticas (2008). Este volumen.
Dautray, R., and Lions, J. L. Analyse mathématique et calcul numérique; pour les sciences et les techniques. Masson, Paris, 1998. Vol. 3.
De Figueiredo, D. G. Positive solutions of semilinear elliptic problems, vol. 957 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, Heidelberg, New York, 1982.
Evans, L. C. Partial differential equations, vol. 19 of Graduate Studies in Mathematics. American Mathematical Society, Providence, 1998.
Kufner, A., John, O., and Fucik, S. Function spaces. Academia, Prague, 1977.
Lions, J. L., and Magenes, E. Problèmes aux limites non homogènes (vi). Journal D ’Analyse Mathématique X I (1963), 165-188.
Ñecas, J. Les méthodes directes en théorie des équations elliptiques. Masson, Prague, 1967. Paris/Academia.
