Publicado

2008-07-01

A result for approximating fixed points of generalized weak contraction of the integral-type by using Picard iteration

Un resultado para aproximar puntos fijos de contracción generalizada débil de la integral-tipo usando iteración de Picard

Palabras clave:

Fixed points, weak contraction of integral type, Picard iteration, 2000 Mathematics Subject Classification. 47H06, 47H10 (en)
Puntos fijos, contracción débil de tipo integral, iteración de Picard (es)

Descargas

Autores/as

  • Memudu Olaposi Olatinwo Obafemi Awolowo University, Ile-Ife, Nigeria

Abstract. Following concepts of A. A. Branciari, y B. E. Rhoades, of in this paper, we shall establish a fixed point theorem by using a generalized weak contraction of integral type. Our result is a generalization of the classical Banach’s fixed point theorem and other related results.

Siguiendo conceptos de A. A. Branciari, y B. E. Rhoades, en este artículo establecemos un teorema de punto fijo usando una contracción débil generalizada de tipo integral. Nuestro resultado es una generalización del clásico teorema del punto fijo de Banach y de otros resultados relacionados.

Referencias

Agarwal, R. P., Mechan, M., and O’Regan, D. Fixed Point Theory and Applications. Cambridge University Press, 2001.

Banach, S. Sur les operations dans les ensembles abstraits et Ieur applications aux equations integrales. Fund. Math. 3 (1922), 133-181.

Berinde, M., and Berinde, V. On a general class of multi-valued weakly Picard mappings. J. Math. Anal. Appl. 326 (2007), 772-782.

Berinde, V. A priori and a posteriori error estimates for a class of ϕ -contractions. Bulletins for Applied & Computing Math. 90, B (1999), 183—192.

Berinde, V. Iterative Approximation of Fixed Points. Editura Efemeride, Baia Mare, 2002.

Berinde, V. Approximating fixed points of weak contractions using Picard iteration. Nonlinear Analysis Forum 5, 1 (2004), 43-53.

Branciari, A. A fixed point theorem for mappings satisfying a general contractive condition of integral type. Int. J. Math. Math. Sci. 29, 9 (2002), 531-536.

Chatterjea, S. K . Fixed-point theorems. C. R. Acad. Bulgare Sci. 10 (1972), 727-730.

Ciric, L. B. Generalized contractions and fixed point theorems. Publ. Inst. Math. (Beograd) (N. S.) 12, 26 (1971), 19-26.

Ciric, L. B. A generalization of Banach’s contraction principle. Proc. Amer. Math. Soc. 45 (1974), 267-273.

Kannan, R. Some results on fixed points. Bull. Calcutta Math. Soc. 10 (1968), 71-76

Rhoades, B. E. A comparison of various definitions of contractive mappings. Trans. Amer. Math. Soc. 226 (1977), 257-290.

Rhoades, B. E. T w o fixed point theorems for mappings satisfying a general contractive condition of integral type. Int. J. Math. Math. Sci. 63 (2003), 4007-4013.

Zamfirescu, T. Fix point theorems in metric spaces. Arch. Math. 23 (1972), 292-298.

Zeidler, E. Nonlinear Functional Analysis and its Applications-Fixed Point Theorems. Springer-Verlag, New York, 1986.

Cómo citar

APA

Olaposi Olatinwo, M. (2008). A result for approximating fixed points of generalized weak contraction of the integral-type by using Picard iteration. Revista Colombiana de Matemáticas, 42(2), 145–151. https://revistas.unal.edu.co/index.php/recolma/article/view/95024

ACM

[1]
Olaposi Olatinwo, M. 2008. A result for approximating fixed points of generalized weak contraction of the integral-type by using Picard iteration. Revista Colombiana de Matemáticas. 42, 2 (jul. 2008), 145–151.

ACS

(1)
Olaposi Olatinwo, M. A result for approximating fixed points of generalized weak contraction of the integral-type by using Picard iteration. rev.colomb.mat 2008, 42, 145-151.

ABNT

OLAPOSI OLATINWO, M. A result for approximating fixed points of generalized weak contraction of the integral-type by using Picard iteration. Revista Colombiana de Matemáticas, [S. l.], v. 42, n. 2, p. 145–151, 2008. Disponível em: https://revistas.unal.edu.co/index.php/recolma/article/view/95024. Acesso em: 7 feb. 2026.

Chicago

Olaposi Olatinwo, Memudu. 2008. «A result for approximating fixed points of generalized weak contraction of the integral-type by using Picard iteration». Revista Colombiana De Matemáticas 42 (2):145-51. https://revistas.unal.edu.co/index.php/recolma/article/view/95024.

Harvard

Olaposi Olatinwo, M. (2008) «A result for approximating fixed points of generalized weak contraction of the integral-type by using Picard iteration», Revista Colombiana de Matemáticas, 42(2), pp. 145–151. Disponible en: https://revistas.unal.edu.co/index.php/recolma/article/view/95024 (Accedido: 7 febrero 2026).

IEEE

[1]
M. Olaposi Olatinwo, «A result for approximating fixed points of generalized weak contraction of the integral-type by using Picard iteration», rev.colomb.mat, vol. 42, n.º 2, pp. 145–151, jul. 2008.

MLA

Olaposi Olatinwo, M. «A result for approximating fixed points of generalized weak contraction of the integral-type by using Picard iteration». Revista Colombiana de Matemáticas, vol. 42, n.º 2, julio de 2008, pp. 145-51, https://revistas.unal.edu.co/index.php/recolma/article/view/95024.

Turabian

Olaposi Olatinwo, Memudu. «A result for approximating fixed points of generalized weak contraction of the integral-type by using Picard iteration». Revista Colombiana de Matemáticas 42, no. 2 (julio 1, 2008): 145–151. Accedido febrero 7, 2026. https://revistas.unal.edu.co/index.php/recolma/article/view/95024.

Vancouver

1.
Olaposi Olatinwo M. A result for approximating fixed points of generalized weak contraction of the integral-type by using Picard iteration. rev.colomb.mat [Internet]. 1 de julio de 2008 [citado 7 de febrero de 2026];42(2):145-51. Disponible en: https://revistas.unal.edu.co/index.php/recolma/article/view/95024

Descargar cita

Visitas a la página del resumen del artículo

108

Descargas

Los datos de descargas todavía no están disponibles.