A result for approximating fixed points of generalized weak contraction of the integral-type by using Picard iteration
Un resultado para aproximar puntos fijos de contracción generalizada débil de la integral-tipo usando iteración de Picard
Palabras clave:
Fixed points, weak contraction of integral type, Picard iteration, 2000 Mathematics Subject Classification. 47H06, 47H10 (en)Puntos fijos, contracción débil de tipo integral, iteración de Picard (es)
Descargas
Abstract. Following concepts of A. A. Branciari, y B. E. Rhoades, of in this paper, we shall establish a fixed point theorem by using a generalized weak contraction of integral type. Our result is a generalization of the classical Banach’s fixed point theorem and other related results.
Siguiendo conceptos de A. A. Branciari, y B. E. Rhoades, en este artículo establecemos un teorema de punto fijo usando una contracción débil generalizada de tipo integral. Nuestro resultado es una generalización del clásico teorema del punto fijo de Banach y de otros resultados relacionados.
Referencias
Agarwal, R. P., Mechan, M., and O’Regan, D. Fixed Point Theory and Applications. Cambridge University Press, 2001.
Banach, S. Sur les operations dans les ensembles abstraits et Ieur applications aux equations integrales. Fund. Math. 3 (1922), 133-181.
Berinde, M., and Berinde, V. On a general class of multi-valued weakly Picard mappings. J. Math. Anal. Appl. 326 (2007), 772-782.
Berinde, V. A priori and a posteriori error estimates for a class of ϕ -contractions. Bulletins for Applied & Computing Math. 90, B (1999), 183—192.
Berinde, V. Iterative Approximation of Fixed Points. Editura Efemeride, Baia Mare, 2002.
Berinde, V. Approximating fixed points of weak contractions using Picard iteration. Nonlinear Analysis Forum 5, 1 (2004), 43-53.
Branciari, A. A fixed point theorem for mappings satisfying a general contractive condition of integral type. Int. J. Math. Math. Sci. 29, 9 (2002), 531-536.
Chatterjea, S. K . Fixed-point theorems. C. R. Acad. Bulgare Sci. 10 (1972), 727-730.
Ciric, L. B. Generalized contractions and fixed point theorems. Publ. Inst. Math. (Beograd) (N. S.) 12, 26 (1971), 19-26.
Ciric, L. B. A generalization of Banach’s contraction principle. Proc. Amer. Math. Soc. 45 (1974), 267-273.
Kannan, R. Some results on fixed points. Bull. Calcutta Math. Soc. 10 (1968), 71-76
Rhoades, B. E. A comparison of various definitions of contractive mappings. Trans. Amer. Math. Soc. 226 (1977), 257-290.
Rhoades, B. E. T w o fixed point theorems for mappings satisfying a general contractive condition of integral type. Int. J. Math. Math. Sci. 63 (2003), 4007-4013.
Zamfirescu, T. Fix point theorems in metric spaces. Arch. Math. 23 (1972), 292-298.
Zeidler, E. Nonlinear Functional Analysis and its Applications-Fixed Point Theorems. Springer-Verlag, New York, 1986.
