On groups and normal polymorphic functions
Sobre grupos y funciones polimorfas normales
Palabras clave:
Kleinian group, polymorphic function, normal function, projective structure (en)Grupo kleiniano, función polimorfa, función normal, estructura proyectiva, 2000 Mathematics Subject Classification. 30F35, 30D45, 30F40 (es)
Descargas
Abstract. Let Γ be a Fuchsian group acting on the unit disk D. A function f meromorphic in D is polymorphic if there exists a homomorphism f* of Γ onto a group Σ of Möbius transformations such that f o ꭚ = f * (ꭚ) o f for ꭚ ∊ Γ. A function is normal if sup (1 - |z|2) | f '(z) |/ (1 + | f (z)|2) < ∞. First we study the behaviour of a normal polymorphic function at the fixed points of Γ and then the existence of such functions for a given type of group Σ.
Sea Γ un grupo fuchsiano que actúa en el disco unitario D. Una función f meromorfa en D es polimorfa si existe un homomorfismo f* de Γ sobre un grupo Σ de transformaciones de Möbius tal que f o ꭚ = f * (ꭚ) o f for ꭚ ∊ Γ Una función es normal si sup (1 - |z|2) | f '(z) |/ (1 + | f (z)|2) < ∞. Primero estudiamos el comportamiento de una función polimorfa normal en los puntos fijos de Γ y después la existencia de tales funciones para un tipo de grupo Σ dado.
Referencias
Abikoff, W. The residual limit set of Kleinian groups. Acta Math. 130 (1973), 127-144.
Anderson, J. M., Clunie, J., and Pommerenke, C. On Bloch functions and normal functions. J. Reine Angew. Math. 270 (1974), 12-37.
Beardon, A. F. The geometry of discrete groups. Springer, New York, 1983.
Gallo, D., Kapovich, M., and Marden, A. The monodromy groups of Schwarzian equations on closed Riemann surfaces. Ann. of Math. 151 (2000), 625-704.
Gehring, F. W., and Martin, G. J. Iteration theory and inequalities for Kleinian groups. Bull. Am. Math. Soc. 21 (1989), 57-63.
Greenberg, L. Discrete subgroups of the Lorentz group. Math.Scand. 10 (1962), 85-107.
Gunning, R. C. Special coordinate coverings of Riemann surfaces. Math. Ann. 170 (1967), 67-86.
Hejhal, D. A. Monodromy groups and linearly polymorphic functions. Acta Math. 135 (1975), 1-55.
Hejhal, D. A. Monodromy groups and Poincaré series. Bull. Am. Math. Soc. 84 (1978), 339-376.
Klimenko, E., and Kopteva, N. Discreteness criteria for RP groups. Israel J. Math. 128 (2002), 247-265.
Klimenko, E., and Kopteva, N. All discrete RP groups whose generators have real traces. Intern. J. Algebra Computation 15 (2005), 577-618.
Klimenko, E., and Kopteva, N. Discrete RP groups with parabolic generator. Sib. Math. J. 46 (2005), 1069-1076.
Klimenko, E., and Kopteva, N. Two-generator Kleinian orbifolds. Preprint, 2007.
Komori, Y., and Parkkonen, J. On the shape of Bers-Maskit slices. Ann. Acad. Sci. Fenn. Math. 32 (2007), 179-198.
Kra, I. Deformations of Fuchsian groups. Duke Math. J. 36 (1969), 537-546.
Lappan, P. A criterion for a meromorphic function to be normal. Comment. Math. Helv. 49 (1974), 492-495.
Lehner, J. Discontinuous groups and automorphic functions. Am. Math. Soc., Providence, 1964.
Lehto, O., and Virtanen, K. I. Boundary behaviour and normal meromorphic functions. Acta Math. 97 (1957), 47-65.
Mandelbaum, R. Branched structures and affine and projective bundles on Riemann surfaces. TYans. Amer. Math. Soc. 183 (1973), 37-58.
Maskit, B. Kleinian groups. Springer, Berlin, 1988.
Mejía, D., And Pommerenke, C. Sobre aplicaciones conformes hiperbólicamente convexas. Rev. Colombiana Mat. 32 (1998), 29-43.
Pommerenke, C. Polymorphic functions for groups of divergence type. Math. Ann. 258 (1982), 353-366.
Pommerenke, C. Boundary behaviour of conformal maps. Springer, Berlin, 1992.
Rosenberger, G. Minimal generating systems of a subgroup of SL(2,C). Proc. Edinb. Math. Soc. II Ser 31 (1988), 261-265.
Sullivan, D. Quasiconformal homeomorphisms and dynamics II: Structural stability implies hyperbolicity for Kleinian groups. Acta Math. 155 (1985), 243-260.
