Chandrasekhar ansatz and the generalized total angular momentum operator for the Dirac equation in the Kerr-Newman metric
El ansatz de Chandrasekhar y el operador generalizado del momento angular para la ecuación de Dirac en la métrica de Kerr-Newman
Palabras clave:
Dirac equation, Kerr-Newman metric, general relativity, 2000 Mathematics Subject Classification. 83C57, 47B15, 47B25 (en)Ecuación de Dirac, métrica de Kerr-Newman, relatividad general (es)
Descargas
Abstract. In this paper we compute the square root of the generalized squared total angular momentum operator J for a Dirac particle in the Kerr-Newman metric. The separation constant λ arising from the Chandrasekahr separation ansatz turns out to be the eigenvalue of J. After proving that J is a symmetry operator, we show the completeness of Chandrasekhar ansatz for the Dirac equation in oblate spheroidal coordinates and derive an explicit formula for the time evolution operator e -itH.
En este trabajo derivamos la raíz cuadrada del operador generalizado del momento angular para una partícula de Dirac en la métrica de Kerr-Newman. La constante de separación λ introducida por el ansatz de Chandrasekhar resulta ser el valor propio de J. Después de haber mostrado que J es un operador de simetría, probamos la completitud del ansatz de Chandrasekhar para la ecuación de Dirac en coordenadas esferoidales oblongas y derivamos una expresión analítica para el operador de evolución temporal e -itH.
Referencias
Batic, D., Schmid, H., and Winklmeier, M. On the eigenvalues of the Chandrasekhar-Page angular equation. J. Math. Phys. 46, 1 (2005), 012504, 35.
Bose, S. K. Studies in the Kerr-Newman metric. J. Mathematical Phys. 16 (1975), 772-775.
Boyer, R. H., and Lindquist, R. W. Maximal analytic extension of the Kerr metric. J. Mathematical Phys. 8 (1967), 265-281.
Carter, B. Hamilton-Jacobi and Schrödinger separable solutions of Einstein’s equations. Comm. Math. Phys. 10 (1968), 280-310.
Carter, B., and McLenaghan, R. G. Generalized total angular momentum operator for the Dirac equation in curved space-time. Phys. Rev. D (3) 19, 4 (1979), 1093-1097.
Chandrasekhar, S. The solution of Dirac’s equation in Kerr geometry. Proc. Roy. Soc. London Ser. A 349, 1659 (1976), 571-575.
Coppel, W. A. Stability and asymptotic behavior of differential equations. D. C. Heath and Co., Boston, Mass., 1965.
Finster, F., Kamran, N., Smoller, J., and Yau, S.-T. The long-time dynamics of Dirac particles in the Kerr-Newman black hole geometry. Adv. Theor. Math. Phys. 7, 1 (2003), 25-52.
Flammer, C. Spheroidal wave functions. Stamford University Press, Stanford, California, 1957.
Goldberg, J. N., Macfarlane, A. J., Newman, E. T., Rohrlich, F., and Sudar - Shan, E. C. G. Spin-s spherical harmonics and 3. J. Mathematical Phys. 8 (1967), 2155-2161.
Goldberg, J. N., and Sachs, R. K. A theorem on Petrov types. Acta Phys. Polon. 22, suppl. (1962), 13-23.
Kato, T. Perturbation theory for linear operators. Die Grundlehren der mathematischen Wissenschaften, Band 132. Springer-Verlag New York, Inc., New York, 1966.
Kinnersley, W. Type D vacuum metrics. J. Mathematical Phys. 10 (1969), 1195-1203.
Levinson, N. The asymptotic nature of solutions of linear systems of differential equations. Duke Math. J. 15 (1948), 111-126.
Misner, C. W., Thorne, K. S., and Wheeler, J. A. Gravitation. W. H. Freeman and Co., San Francisco, Calif., 1973.
Newman, E., and Penrose, R. An approach to gravitational radiation by a method of spin coefficients. J. Mathematical Phys. 3 (1962), 566-578.
Newman, E. T., and Penrose, R. Note on the Bondi-Metzner-Sachs group. J. Mathematical Phys. 7 (1966), 863-870.
Page, D. N. Dirac equation around a charged, rotating black hole. Phys. Rev. D 14, 6 (Sep 1976), 1509 -1510.
Penrose, R., and Rindler, W. Spinors and. space-time. Vol. 1. Cambridge Monographs on Mathematical Physics. Cambridge University Press, Cambridge, 1987. Two-spinor calculus and relativistic fields.
Reed, M., and Simon, B. Methods of modem mathematical physics. I, second ed. Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York, 1980. Functional analysis.
Thaller, B. The Dirac equation. Texts and Monographs in Physics. Springer-Verlag, Berlin, 1992.
Walker, M., and Penrose, R. On quadratic first integrals of the geodesic equations for type {22} spacetimes. Comm. Math. Phys. 18 (1970), 265-274.
Weidmann, J. Linear operators in Hilbert spaces, vol. 68 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1980. Translated from the German by Joseph Szücs.
Weidmann, J. Spectral theory of ordinary differential operators, vol. 1258 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1987.
Yafaev, D. R. Mathematical scattering theory, vol. 105 of Translations of Mathematical Monographs. American Mathematical Society, Providence, RI, 1992. General theory, Translated from the Russian by J. R. Schulenberger.
