Publicado

2008-07-01

Chandrasekhar ansatz and the generalized total angular momentum operator for the Dirac equation in the Kerr-Newman metric

El ansatz de Chandrasekhar y el operador generalizado del momento angular para la ecuación de Dirac en la métrica de Kerr-Newman

Palabras clave:

Dirac equation, Kerr-Newman metric, general relativity, 2000 Mathematics Subject Classification. 83C57, 47B15, 47B25 (en)
Ecuación de Dirac, métrica de Kerr-Newman, relatividad general (es)

Descargas

Autores/as

  • Davide Batic Universidad de Los Andes, Bogotá, Colombia
  • Harald Schmid Software & Engineering GmbH, Amberg, Alemania

Abstract. In this paper we compute the square root of the generalized squared total angular momentum operator J for a Dirac particle in the Kerr-Newman metric. The separation constant λ arising from the Chandrasekahr separation ansatz turns out to be the eigenvalue of J. After proving that J is a symmetry operator, we show the completeness of Chandrasekhar ansatz for the Dirac equation in oblate spheroidal coordinates and derive an explicit formula for the time evolution operator e -itH.

En este trabajo derivamos la raíz cuadrada del operador generalizado del momento angular para una partícula de Dirac en la métrica de Kerr-Newman. La constante de separación λ introducida por el ansatz de Chandrasekhar resulta ser el valor propio de J. Después de haber mostrado que J es un operador de simetría, probamos la completitud del ansatz de Chandrasekhar para la ecuación de Dirac en coordenadas esferoidales oblongas y derivamos una expresión analítica para el operador de evolución temporal e -itH.

Referencias

Batic, D., Schmid, H., and Winklmeier, M. On the eigenvalues of the Chandrasekhar-Page angular equation. J. Math. Phys. 46, 1 (2005), 012504, 35.

Bose, S. K. Studies in the Kerr-Newman metric. J. Mathematical Phys. 16 (1975), 772-775.

Boyer, R. H., and Lindquist, R. W. Maximal analytic extension of the Kerr metric. J. Mathematical Phys. 8 (1967), 265-281.

Carter, B. Hamilton-Jacobi and Schrödinger separable solutions of Einstein’s equations. Comm. Math. Phys. 10 (1968), 280-310.

Carter, B., and McLenaghan, R. G. Generalized total angular momentum operator for the Dirac equation in curved space-time. Phys. Rev. D (3) 19, 4 (1979), 1093-1097.

Chandrasekhar, S. The solution of Dirac’s equation in Kerr geometry. Proc. Roy. Soc. London Ser. A 349, 1659 (1976), 571-575.

Coppel, W. A. Stability and asymptotic behavior of differential equations. D. C. Heath and Co., Boston, Mass., 1965.

Finster, F., Kamran, N., Smoller, J., and Yau, S.-T. The long-time dynamics of Dirac particles in the Kerr-Newman black hole geometry. Adv. Theor. Math. Phys. 7, 1 (2003), 25-52.

Flammer, C. Spheroidal wave functions. Stamford University Press, Stanford, California, 1957.

Goldberg, J. N., Macfarlane, A. J., Newman, E. T., Rohrlich, F., and Sudar - Shan, E. C. G. Spin-s spherical harmonics and 3. J. Mathematical Phys. 8 (1967), 2155-2161.

Goldberg, J. N., and Sachs, R. K. A theorem on Petrov types. Acta Phys. Polon. 22, suppl. (1962), 13-23.

Kato, T. Perturbation theory for linear operators. Die Grundlehren der mathematischen Wissenschaften, Band 132. Springer-Verlag New York, Inc., New York, 1966.

Kinnersley, W. Type D vacuum metrics. J. Mathematical Phys. 10 (1969), 1195-1203.

Levinson, N. The asymptotic nature of solutions of linear systems of differential equations. Duke Math. J. 15 (1948), 111-126.

Misner, C. W., Thorne, K. S., and Wheeler, J. A. Gravitation. W. H. Freeman and Co., San Francisco, Calif., 1973.

Newman, E., and Penrose, R. An approach to gravitational radiation by a method of spin coefficients. J. Mathematical Phys. 3 (1962), 566-578.

Newman, E. T., and Penrose, R. Note on the Bondi-Metzner-Sachs group. J. Mathematical Phys. 7 (1966), 863-870.

Page, D. N. Dirac equation around a charged, rotating black hole. Phys. Rev. D 14, 6 (Sep 1976), 1509 -1510.

Penrose, R., and Rindler, W. Spinors and. space-time. Vol. 1. Cambridge Monographs on Mathematical Physics. Cambridge University Press, Cambridge, 1987. Two-spinor calculus and relativistic fields.

Reed, M., and Simon, B. Methods of modem mathematical physics. I, second ed. Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York, 1980. Functional analysis.

Thaller, B. The Dirac equation. Texts and Monographs in Physics. Springer-Verlag, Berlin, 1992.

Walker, M., and Penrose, R. On quadratic first integrals of the geodesic equations for type {22} spacetimes. Comm. Math. Phys. 18 (1970), 265-274.

Weidmann, J. Linear operators in Hilbert spaces, vol. 68 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1980. Translated from the German by Joseph Szücs.

Weidmann, J. Spectral theory of ordinary differential operators, vol. 1258 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1987.

Yafaev, D. R. Mathematical scattering theory, vol. 105 of Translations of Mathematical Monographs. American Mathematical Society, Providence, RI, 1992. General theory, Translated from the Russian by J. R. Schulenberger.

Cómo citar

APA

Batic, D. & Schmid, H. (2008). Chandrasekhar ansatz and the generalized total angular momentum operator for the Dirac equation in the Kerr-Newman metric. Revista Colombiana de Matemáticas, 42(2), 183–207. https://revistas.unal.edu.co/index.php/recolma/article/view/95030

ACM

[1]
Batic, D. y Schmid, H. 2008. Chandrasekhar ansatz and the generalized total angular momentum operator for the Dirac equation in the Kerr-Newman metric. Revista Colombiana de Matemáticas. 42, 2 (jul. 2008), 183–207.

ACS

(1)
Batic, D.; Schmid, H. Chandrasekhar ansatz and the generalized total angular momentum operator for the Dirac equation in the Kerr-Newman metric. rev.colomb.mat 2008, 42, 183-207.

ABNT

BATIC, D.; SCHMID, H. Chandrasekhar ansatz and the generalized total angular momentum operator for the Dirac equation in the Kerr-Newman metric. Revista Colombiana de Matemáticas, [S. l.], v. 42, n. 2, p. 183–207, 2008. Disponível em: https://revistas.unal.edu.co/index.php/recolma/article/view/95030. Acesso em: 27 dic. 2025.

Chicago

Batic, Davide, y Harald Schmid. 2008. «Chandrasekhar ansatz and the generalized total angular momentum operator for the Dirac equation in the Kerr-Newman metric». Revista Colombiana De Matemáticas 42 (2):183-207. https://revistas.unal.edu.co/index.php/recolma/article/view/95030.

Harvard

Batic, D. y Schmid, H. (2008) «Chandrasekhar ansatz and the generalized total angular momentum operator for the Dirac equation in the Kerr-Newman metric», Revista Colombiana de Matemáticas, 42(2), pp. 183–207. Disponible en: https://revistas.unal.edu.co/index.php/recolma/article/view/95030 (Accedido: 27 diciembre 2025).

IEEE

[1]
D. Batic y H. Schmid, «Chandrasekhar ansatz and the generalized total angular momentum operator for the Dirac equation in the Kerr-Newman metric», rev.colomb.mat, vol. 42, n.º 2, pp. 183–207, jul. 2008.

MLA

Batic, D., y H. Schmid. «Chandrasekhar ansatz and the generalized total angular momentum operator for the Dirac equation in the Kerr-Newman metric». Revista Colombiana de Matemáticas, vol. 42, n.º 2, julio de 2008, pp. 183-07, https://revistas.unal.edu.co/index.php/recolma/article/view/95030.

Turabian

Batic, Davide, y Harald Schmid. «Chandrasekhar ansatz and the generalized total angular momentum operator for the Dirac equation in the Kerr-Newman metric». Revista Colombiana de Matemáticas 42, no. 2 (julio 1, 2008): 183–207. Accedido diciembre 27, 2025. https://revistas.unal.edu.co/index.php/recolma/article/view/95030.

Vancouver

1.
Batic D, Schmid H. Chandrasekhar ansatz and the generalized total angular momentum operator for the Dirac equation in the Kerr-Newman metric. rev.colomb.mat [Internet]. 1 de julio de 2008 [citado 27 de diciembre de 2025];42(2):183-207. Disponible en: https://revistas.unal.edu.co/index.php/recolma/article/view/95030

Descargar cita

Visitas a la página del resumen del artículo

144

Descargas

Los datos de descargas todavía no están disponibles.