Publicado

2008-07-01

Existence of global weak solutions to a symmetrically hyperbolic system with a source

Existencia de soluciones débiles globales para un sistema hiperbólico simétrico con una fuente

Palabras clave:

Symmetrically hyperbolic system, source terms, weak solution, compensated compactness method, 2000 Mathematics Subject Classification. 35D05, 35L60 (en)
Sistema simétrico hiperbólico, términos fuente, solución débil, método de compacidad compensada (es)

Descargas

Autores/as

  • Guo-Qiang Song Nanjing University of Aeronautics and Astronautics, Nanjing, China

Abstract. In this paper the existence of global bounded weak solutions is obtained for the Cauchy problem of a symmetrically hyperbolic system with a source by using the theory of compensated compactness. This system arises in such areas as elasticity theory, magnetohydrodynamics, and enhanced oil recovery.

En este artículo se obtiene la existencia de soluciones débiles acotadas globalmente para el problema de Cauchy de un sistema simétricamente hiperbólico con una fuente, usando la teoría de la compacidad compensada. Este sistema surge en áreas como la teoría de la elasticidad, la magneto-hidrodinámica y el mejoramiento en la recuperación de petróleo.

Referencias

Chen, G. Q. Hyperbolic system of conservation laws with a symmetry. Commun. PDB 16 (1991), 1461-1487.

Chen, G. Q., and Lu, Y. G. The study on application way of the compensated com¬pactness theory (in Chinese). Chin. Sci. Bull. 34, 1 (1989), 15-19.

Chueh, K. N., Conley, C. C., and Smoller, J. A. Positive invariant regions for systems of nonlinear diffusion equations. Indiana Univ. Math. J. 26 (1977), 372-411.

Conway, E., and Smoller, J. Global solutions of the Cauchy problem for quasilinear first order equations in several space variable. Comm. Pure Appl. Math. 19 (1966), 95-105.

Keyfitz, B., and Kranzer, H. A system of nonstrictly hyperbolic conservation laws arising in elasticity. Arch. Ration. Mech. Anal. 72 (1980), 219-241.

Liu, T. P., and Wang, J. H. On a hyperbolic system of conservation laws which is not strictly hyperbolic. J. Differential Equations 57 (1985), 1-14.

Lu, Y. G. Existence of generalized golutions for some coupled system of nonlinear hyperbolic equations (in Chinese). J. Sys. Sci. & Math. Scis. 16 (1996), 125-135.

Lu, Y. G. Hyperbolic conservation laws and the compensated compactess method. Chapman and Hall, New York, 2002. Vol. 128.

Lu, Y. G. Global weak solution for a symmetrically hyperbolic system. Appl. Math. Lett. 19 (2006), 522-526.

Oleinik, O. Discontinuous solutions of nonlinear differential equations. Usp. Mat. Nauk. (N.S.) 12 (1957), 3-73.

Protter, M. H., and Weinberger, H. F. Maximum principles in differential equations. Prentice-Hall, 1967.

Smoller, J. Shock Waves and Reaction-Diffusion Equations. Springer-Verlag, New York, 1982.

Tartar, T. Compensated compactness and applications to partial differential equations. In Research Notes in Mathematics, Nonlinear Analysis and Mechanics (London, 1979), R. J. Knops, Ed., vol. 4, Heriot-Watt Symposium, Pitman Press.

Volpert, A. The space bv and quasilinear equations. Mat. Sb. 73 (1967), 255-302.

Cómo citar

APA

Song, G.-Q. (2008). Existence of global weak solutions to a symmetrically hyperbolic system with a source. Revista Colombiana de Matemáticas, 42(2), 221–232. https://revistas.unal.edu.co/index.php/recolma/article/view/95032

ACM

[1]
Song, G.-Q. 2008. Existence of global weak solutions to a symmetrically hyperbolic system with a source. Revista Colombiana de Matemáticas. 42, 2 (jul. 2008), 221–232.

ACS

(1)
Song, G.-Q. Existence of global weak solutions to a symmetrically hyperbolic system with a source. rev.colomb.mat 2008, 42, 221-232.

ABNT

SONG, G.-Q. Existence of global weak solutions to a symmetrically hyperbolic system with a source. Revista Colombiana de Matemáticas, [S. l.], v. 42, n. 2, p. 221–232, 2008. Disponível em: https://revistas.unal.edu.co/index.php/recolma/article/view/95032. Acesso em: 28 dic. 2025.

Chicago

Song, Guo-Qiang. 2008. «Existence of global weak solutions to a symmetrically hyperbolic system with a source». Revista Colombiana De Matemáticas 42 (2):221-32. https://revistas.unal.edu.co/index.php/recolma/article/view/95032.

Harvard

Song, G.-Q. (2008) «Existence of global weak solutions to a symmetrically hyperbolic system with a source», Revista Colombiana de Matemáticas, 42(2), pp. 221–232. Disponible en: https://revistas.unal.edu.co/index.php/recolma/article/view/95032 (Accedido: 28 diciembre 2025).

IEEE

[1]
G.-Q. Song, «Existence of global weak solutions to a symmetrically hyperbolic system with a source», rev.colomb.mat, vol. 42, n.º 2, pp. 221–232, jul. 2008.

MLA

Song, G.-Q. «Existence of global weak solutions to a symmetrically hyperbolic system with a source». Revista Colombiana de Matemáticas, vol. 42, n.º 2, julio de 2008, pp. 221-32, https://revistas.unal.edu.co/index.php/recolma/article/view/95032.

Turabian

Song, Guo-Qiang. «Existence of global weak solutions to a symmetrically hyperbolic system with a source». Revista Colombiana de Matemáticas 42, no. 2 (julio 1, 2008): 221–232. Accedido diciembre 28, 2025. https://revistas.unal.edu.co/index.php/recolma/article/view/95032.

Vancouver

1.
Song G-Q. Existence of global weak solutions to a symmetrically hyperbolic system with a source. rev.colomb.mat [Internet]. 1 de julio de 2008 [citado 28 de diciembre de 2025];42(2):221-32. Disponible en: https://revistas.unal.edu.co/index.php/recolma/article/view/95032

Descargar cita

Visitas a la página del resumen del artículo

94

Descargas

Los datos de descargas todavía no están disponibles.