Publicado

2009-01-01

Continuity of the quenching time in a semilinear heat equation with a potential

Continuidad del tiempo de extinción en una ecuación semilineal de calor con potencial

Palabras clave:

Quenching, semilinear heat equation, numerical quenching time (en)
Apagamiento, ecuación de calor semilineal, tiempo de apagamiento numérico (es)

Descargas

Autores/as

  • Théodore K. Boni Institut National Polytechnique Houphouët-Boigny de Yamoussoukro, Abidjan, Côte d’Ivoire
  • Thibaut K. Kouakou Université d’Abobo-Adjamé, UFR-SFA, Abidjan, Côte d’Ivoire

Abstract. In this paper, we consider a semilinear heat equation with a potential subject to Neumann boundary conditions and positive initial data. Under some assumptions, we show that the solution of the above problem quenches in a finite time and estimate its quenching time. We also prove the continuity of the quenching time as a function of the potential and the initial data. Finally, we give some numerical results to illustrate our analysis.

 

En este trabajo consideramos una ecuación semilineal de calor con potencial, sujeta a condiciones de Neumann de frontera y datos iniciales positivos. Bajo ciertos supuestos mostramos que la solución de dicha ecuación se apaga en tiempo finito y estimamos el tiempo en que lo hace. También probamos la continuidad del tiempo de extinción en función del potencial y de los datos iniciales. Finalmente damos algunos resultados numéricos que ilustran nuestro análisis.

Referencias

A. Acker and B. Kawolil, Remarks on quenchinq, Nonl. Anal. TMA 13 (1989), 53-61. [2] A. Acker and W. Walter, The quenching problem for nonlinear parabolic differential equations, Springer Verlag, New York, 1989, Lecture Notes in Math., 564.

C. Bandle and C. M. Braumer, Singular perturbation method in a parabolic problem with free boundary, BAIL IVth Conference, Boole Press Conf. (Novosibirsk), 8, 1986, pp. 7-14.

P. Baras and L. Cohen, Complete blow-up after tmax for the solution of a semilinear heat equation, J. Funct. Anal. 7 1 (1987), 142-174.

T. K. Boni, On quenching of solutions for some semilinear parabolic equations of second order, Bull. Belg. Math. Soc. 7 (2000), 73-95.

_____ Extinction for discretizations of some semilinear parabolic equations, C. R. Acad. Sci. Paris 333 (2001), 795-800.

T. K. Boni and F. K. N’gohisse, Continuity of the quenching time in a semilinear heat equation, An. Univ. Mariae Curie Sklodowska. To appear.

C. Cortazar, M. del Pino, and M. Elgueta, On the blov)-up set for ut = δum + um, m > 1, Indiana Univ. Math. J. 47 (1998), 541-561.

K. Deng and M. Xu, Quenching for a nonlinear diffusion equation with singular boundary condition, Z. Angew. Math. Pliys. 50 (1999), 574-584.

M. Fila, B. Kawohl, and H. A. Levine, Quenching for quasilincar equations, Comm. Part. Diff. Equat. 17 (1992), 593-614.

M. Fila and H. A. Levine, Quenching on the boundary, Nonl. Anal. TMA 21 (1993), 795-802.

A. Friedman and B. McLeod, Blow-up of positive solutions of nonlinear heat equations, Indiana Univ. Math. J. 34 (1985), 425-477.

V. Galaktionov and J. L. Vazquez, Continuation of blow-up solutions of nonlinear heat equations in several space dimensions, Comm. Pure Appl. Math. 50 (1997), 1-67.

V. A. Galaktionov, Boundary value problems for the nonlinear parabolic equation ut = δuσ+1 + uβ, Differ. Equat. 17 (1981), 551-555.

P. Groisman and J. D. Rossi, Dependance of the blow-up time with respect to parameters and numerical approximations for a parabolic problem, Asympt. Anal. 37 (2004), 79-91.

P. Groisman, J. D. Rossi, and H. Zaag, On the dependence of the blow up time with respect to the initial data in a semilinear parabolic problem, Comm. Part. Differential Equations 28 (2003), 737-744.

J. Guo, On a quenching problem with Robin boundary condition, Nonl. Anal. TMA 17 (1991), 803-809.

M. A. Herreros and J. L. Vazquez, Generic behaviour of one-dimensional blow up patterns, Ann. Scuola. Norm. Sup. Pisa Cl. Sci. 19 (1992), no. 3, 381-450.

H. Kawarada, On solutions of initial-boundary problem for ut = uxx + 1/(1 - u), Pul. Res. Inst. Math. Sci. 10 (1975), 729-736.

C. M. Kirk and C. A. Roberts, A review of quenching results in the context of nonlinear volterra equations, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 10 (2003), 343-356.

H. A. Levine, The quenching of solutions of linear parabolic and hyperbolic equations with nonlinear boundary conditions, SIAM J. Math. Anal. 14 (1983), 1139-1152.

_____ Trends in the theory and practice of nonlinear analysis, ch. The phenomenon of quenching: a survey, North Holland, Amsterdam, 1985, 275-286.

_____ Quenching, nonquenching and beyond quenching for solution of some parabolic equations, Ann. Math. Pura Appl. 155 (1989), 243-260.

F. Merle, Solution of a nonlinear heat equation with arbitrarily given blow up points, Comm. Pure Appl. Math. 45 (1992), 293-300.

D. Nabongo and T. K. Boni, Quenching time of solutions for some nonlinear parabolic equations, An. St. Univ. Ovidius Constanta, Ser. Math. 16 (2008), 87-102.

D. Phillips, Existence of solution of quenching problems, Appl. Anal. 24 (1987), 253-264.

S. P. KMiklhailov V. A. Galaktionov and A. A. Samarskii, Unbounded solutions of the Cauchy problem for the parabolic equation ut = ∇ (uᵟ ∇ u) + uβ, Soviet Phys. Dokl. 25 (1980), 458-459.

Cómo citar

APA

Boni, T. K. y Kouakou, T. K. (2009). Continuity of the quenching time in a semilinear heat equation with a potential. Revista Colombiana de Matemáticas, 43(1), 55–70. https://revistas.unal.edu.co/index.php/recolma/article/view/95538

ACM

[1]
Boni, T.K. y Kouakou, T.K. 2009. Continuity of the quenching time in a semilinear heat equation with a potential. Revista Colombiana de Matemáticas. 43, 1 (ene. 2009), 55–70.

ACS

(1)
Boni, T. K.; Kouakou, T. K. Continuity of the quenching time in a semilinear heat equation with a potential. rev.colomb.mat 2009, 43, 55-70.

ABNT

BONI, T. K.; KOUAKOU, T. K. Continuity of the quenching time in a semilinear heat equation with a potential. Revista Colombiana de Matemáticas, [S. l.], v. 43, n. 1, p. 55–70, 2009. Disponível em: https://revistas.unal.edu.co/index.php/recolma/article/view/95538. Acesso em: 2 feb. 2025.

Chicago

Boni, Théodore K., y Thibaut K. Kouakou. 2009. «Continuity of the quenching time in a semilinear heat equation with a potential». Revista Colombiana De Matemáticas 43 (1):55-70. https://revistas.unal.edu.co/index.php/recolma/article/view/95538.

Harvard

Boni, T. K. y Kouakou, T. K. (2009) «Continuity of the quenching time in a semilinear heat equation with a potential», Revista Colombiana de Matemáticas, 43(1), pp. 55–70. Disponible en: https://revistas.unal.edu.co/index.php/recolma/article/view/95538 (Accedido: 2 febrero 2025).

IEEE

[1]
T. K. Boni y T. K. Kouakou, «Continuity of the quenching time in a semilinear heat equation with a potential», rev.colomb.mat, vol. 43, n.º 1, pp. 55–70, ene. 2009.

MLA

Boni, T. K., y T. K. Kouakou. «Continuity of the quenching time in a semilinear heat equation with a potential». Revista Colombiana de Matemáticas, vol. 43, n.º 1, enero de 2009, pp. 55-70, https://revistas.unal.edu.co/index.php/recolma/article/view/95538.

Turabian

Boni, Théodore K., y Thibaut K. Kouakou. «Continuity of the quenching time in a semilinear heat equation with a potential». Revista Colombiana de Matemáticas 43, no. 1 (enero 1, 2009): 55–70. Accedido febrero 2, 2025. https://revistas.unal.edu.co/index.php/recolma/article/view/95538.

Vancouver

1.
Boni TK, Kouakou TK. Continuity of the quenching time in a semilinear heat equation with a potential. rev.colomb.mat [Internet]. 1 de enero de 2009 [citado 2 de febrero de 2025];43(1):55-70. Disponible en: https://revistas.unal.edu.co/index.php/recolma/article/view/95538

Descargar cita

Visitas a la página del resumen del artículo

32

Descargas

Los datos de descargas todavía no están disponibles.