Perfect powers in solutions to Pell equations
Potencias perfectas en soluciones a las ecuaciones de Pell
Palabras clave:
Pell equation, Diophantine application (en)Ecuación de Pell, Aplicación diofántica (es)
Descargas
Abstract. In this paper, we study the appearance of perfect powers in the first component of a non-minimal solution of a Pell equation. We give an upper bound on the counting function of the positive integers n having the property that some power of it (of exponent larger than 1) is the first component of a non-minimal solution of a Pell equation, and we present a Diophantine application.
En este trabajo, investigamos la aparición de las potencias perfectas en la primera componente de una solución no minimal de una ecuación de Pell. Damos una cota superior sobre la función de conteo del conjunto de los enteros positivos n tal que alguna potencia suya con exponente mayor que 1 es la primera componente de una solución no-minimal de una ecuación de Pell y presentamos una aplicación Diofántica.
Referencias
A. Baker and G. Wüstholz, Logarithmic forms and group varieties, J. Reine Angew. Math. 442 (1993), 19-62.
Y. Bugeaud, Sur la distance entre deux puissances pures, C.R. Acad. Sci. Paris Sèr. I Math. 332 (1996), 1119 -112 1 (fr).
Y. Bugeaud and M. Laurent, Minoration effective de la distance p-adique entre puissances de nombres algébriques, J. Number Theory 61 (1996), 311-342 (fr).
R. D. Carmichael, On the numerical factors of the arithmetic forms αn ± βn, Ann. Math. 15 (1913), 30-70.
K. Chakraborty, F. Luca, and A. Mukhopadhyay, Exponents of class groups of real quadratic fields, Int. J. Number Theory 4 (2008), 597-611.
J. H. Cohn, The Diophantine equation x4 - Dy2 = 1 II, Acta Arith. 78 (1997), 401-403. [7] J. Esmonde and M. R. Murty, Problems in algebraic number theory, Springer Verlag, New York, 1999.
J. H. Evertse and J. H. Silverman, Uniform bounds for the number oj solutions to yn = f(x), Math. Proc. Cambr. Phil. Soc. 100 (1986), 237— 248.
W. Ljunggren, Über die gleichung x4 - Dy2 = 1, Arch. Math. Naturv. 45 (1942), no. 5, 61-70 (al).
F. Luca and P. G. Walsh, The product of like-indexed terms in binary recurrences, J. Number Theory 96 (2002), 152-173.
I. Nemes and A. Petho, Polynomial values in linear recurrences II, J. Number Theory 24 (1986), 47-53.
W. M. Schmidt, Diophantine approximations and diophantine equations, Springer Verlag, Berlin, 1991, Lecture Notes in Artificial Intelligence, 1467.
T. N. Shorey and C. L. Stewart, On the diophantine equation ax2t + bxty + cy2 = d and pure powers in recurrence sequences, Math. Scand. 52 (1983), 24-36.
T. N. Shorey and R. Tijdeman, Exponential diophantine equations, Cam bridge U. Press, Cambridge, 1986.
